{"title":"绝热不变性及其在黑体辐射维恩完全位移定律中的应用","authors":"Don S. Lemons, William R. Shanahan","doi":"10.1119/5.0158187","DOIUrl":null,"url":null,"abstract":"We derive the “complete” or “strong” version of Wien's displacement law from two adiabatic invariants: one of a thermodynamic system composed of a finite-sized segment of frequencies taken from the spectrum of blackbody radiation and one of the individual electromagnetic waves that compose this system. By exploiting the algebra of these invariants, we shift the calculational burden of deriving Wien's displacement law toward the methods of classical thermodynamics. These methods also produce a class of displacement laws that constrain both the particles of a classical ideal gas and the acoustic waves of the Debye model of a solid.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adiabatic invariance and its application to Wien's complete displacement law of blackbody radiation\",\"authors\":\"Don S. Lemons, William R. Shanahan\",\"doi\":\"10.1119/5.0158187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the “complete” or “strong” version of Wien's displacement law from two adiabatic invariants: one of a thermodynamic system composed of a finite-sized segment of frequencies taken from the spectrum of blackbody radiation and one of the individual electromagnetic waves that compose this system. By exploiting the algebra of these invariants, we shift the calculational burden of deriving Wien's displacement law toward the methods of classical thermodynamics. These methods also produce a class of displacement laws that constrain both the particles of a classical ideal gas and the acoustic waves of the Debye model of a solid.\",\"PeriodicalId\":7589,\"journal\":{\"name\":\"American Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1119/5.0158187\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/5.0158187","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Adiabatic invariance and its application to Wien's complete displacement law of blackbody radiation
We derive the “complete” or “strong” version of Wien's displacement law from two adiabatic invariants: one of a thermodynamic system composed of a finite-sized segment of frequencies taken from the spectrum of blackbody radiation and one of the individual electromagnetic waves that compose this system. By exploiting the algebra of these invariants, we shift the calculational burden of deriving Wien's displacement law toward the methods of classical thermodynamics. These methods also produce a class of displacement laws that constrain both the particles of a classical ideal gas and the acoustic waves of the Debye model of a solid.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.