Hari Soetanto, Painem, Muhammad Kamil Suryadewiansyah
{"title":"基于插值、前向连锁和确定性因子的专家系统在诊断腹绞痛方面的优化","authors":"Hari Soetanto, Painem, Muhammad Kamil Suryadewiansyah","doi":"10.3844/jcssp.2024.191.197","DOIUrl":null,"url":null,"abstract":": Abdominal colic is a common condition that affects infants and it can be difficult to diagnose because it shares many symptoms with other conditions, such as gastric disease and appendicitis. Limitations of existing diagnostic methods include the unreliability of physical examinations and medical histories and the high cost and time-consuming nature of imaging tests. This research proposes an expert system based on interpolation, forward chaining, and certainty factors for diagnosing abdominal colic. This system has the potential to provide a more accurate and efficient way to diagnose abdominal colic, which could lead to better patient outcomes. This research proposes an expert system based on interpolation, forward chaining, and certainty factors for diagnosing abdominal colic. This system is implemented as a web application model. The forward chaining method is used to establish rules for the expert system. The rules are based on the symptoms and diseases that are included in the system's knowledge base. The interpolation method is used to normalize lab results and the certainty factor method is used to process medical history and physical examinations. This is necessary because medical history and physical examinations can be imprecise. The expert system was tested on a dataset of 100 cases and it was able to accurately diagnose 96 patients, achieving a 96% accuracy rate. This suggests that the expert system has the potential to provide a more accurate and efficient way to diagnose abdominal colic, which could lead to better patient outcomes.","PeriodicalId":40005,"journal":{"name":"Journal of Computer Science","volume":"51 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Expert System Based on Interpolation, Forward Chaining, and Certainty Factor for Diagnosing Abdominal Colic\",\"authors\":\"Hari Soetanto, Painem, Muhammad Kamil Suryadewiansyah\",\"doi\":\"10.3844/jcssp.2024.191.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Abdominal colic is a common condition that affects infants and it can be difficult to diagnose because it shares many symptoms with other conditions, such as gastric disease and appendicitis. Limitations of existing diagnostic methods include the unreliability of physical examinations and medical histories and the high cost and time-consuming nature of imaging tests. This research proposes an expert system based on interpolation, forward chaining, and certainty factors for diagnosing abdominal colic. This system has the potential to provide a more accurate and efficient way to diagnose abdominal colic, which could lead to better patient outcomes. This research proposes an expert system based on interpolation, forward chaining, and certainty factors for diagnosing abdominal colic. This system is implemented as a web application model. The forward chaining method is used to establish rules for the expert system. The rules are based on the symptoms and diseases that are included in the system's knowledge base. The interpolation method is used to normalize lab results and the certainty factor method is used to process medical history and physical examinations. This is necessary because medical history and physical examinations can be imprecise. The expert system was tested on a dataset of 100 cases and it was able to accurately diagnose 96 patients, achieving a 96% accuracy rate. This suggests that the expert system has the potential to provide a more accurate and efficient way to diagnose abdominal colic, which could lead to better patient outcomes.\",\"PeriodicalId\":40005,\"journal\":{\"name\":\"Journal of Computer Science\",\"volume\":\"51 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jcssp.2024.191.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jcssp.2024.191.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Expert System Based on Interpolation, Forward Chaining, and Certainty Factor for Diagnosing Abdominal Colic
: Abdominal colic is a common condition that affects infants and it can be difficult to diagnose because it shares many symptoms with other conditions, such as gastric disease and appendicitis. Limitations of existing diagnostic methods include the unreliability of physical examinations and medical histories and the high cost and time-consuming nature of imaging tests. This research proposes an expert system based on interpolation, forward chaining, and certainty factors for diagnosing abdominal colic. This system has the potential to provide a more accurate and efficient way to diagnose abdominal colic, which could lead to better patient outcomes. This research proposes an expert system based on interpolation, forward chaining, and certainty factors for diagnosing abdominal colic. This system is implemented as a web application model. The forward chaining method is used to establish rules for the expert system. The rules are based on the symptoms and diseases that are included in the system's knowledge base. The interpolation method is used to normalize lab results and the certainty factor method is used to process medical history and physical examinations. This is necessary because medical history and physical examinations can be imprecise. The expert system was tested on a dataset of 100 cases and it was able to accurately diagnose 96 patients, achieving a 96% accuracy rate. This suggests that the expert system has the potential to provide a more accurate and efficient way to diagnose abdominal colic, which could lead to better patient outcomes.
期刊介绍:
Journal of Computer Science is aimed to publish research articles on theoretical foundations of information and computation, and of practical techniques for their implementation and application in computer systems. JCS updated twelve times a year and is a peer reviewed journal covers the latest and most compelling research of the time.