{"title":"材料边界的表面电荷和表面电流密度","authors":"Richard Marchand","doi":"10.1119/5.0164442","DOIUrl":null,"url":null,"abstract":"In electromagnetism, materials with a polarization density P→ or a magnetization density M→ are known to exhibit a bound surface charge density σb=P→·n̂ or a surface current density κ→b=M→×n̂, respectively, where n̂ is the unit vector perpendicular to the material boundary surface, directed outward. These expressions can be obtained from volume integrations for the electric potential V, or the magnetic vector potential A→, in which the integrals are restricted to the material volumes delimited by their respective boundaries. In that case, applying the divergence theorem leads to surface integrals on material boundaries and to the above-mentioned surface quantities. In this paper, a simple derivation is presented, which shows that both σb and κ→b are included in the expressions for the volume charge or current densities, provided that the divergence and curl operators are evaluated at the boundary so as to account for discontinuities at interfaces.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface charge and surface current densities at material boundaries\",\"authors\":\"Richard Marchand\",\"doi\":\"10.1119/5.0164442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In electromagnetism, materials with a polarization density P→ or a magnetization density M→ are known to exhibit a bound surface charge density σb=P→·n̂ or a surface current density κ→b=M→×n̂, respectively, where n̂ is the unit vector perpendicular to the material boundary surface, directed outward. These expressions can be obtained from volume integrations for the electric potential V, or the magnetic vector potential A→, in which the integrals are restricted to the material volumes delimited by their respective boundaries. In that case, applying the divergence theorem leads to surface integrals on material boundaries and to the above-mentioned surface quantities. In this paper, a simple derivation is presented, which shows that both σb and κ→b are included in the expressions for the volume charge or current densities, provided that the divergence and curl operators are evaluated at the boundary so as to account for discontinuities at interfaces.\",\"PeriodicalId\":7589,\"journal\":{\"name\":\"American Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1119/5.0164442\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/5.0164442","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
摘要
在电磁学中,具有极化密度 P→ 或磁化密度 M→ 的材料分别表现出约束表面电荷密度 σb=P→-n ̂ 或表面电流密度 κ→b=M→×n ̂,其中 n ̂ 是垂直于材料边界表面的向外的单位矢量。这些表达式可以从电动势 V 或磁矢量势 A→ 的体积积分中获得,其中积分仅限于由各自边界限定的材料体积。在这种情况下,应用发散定理可以得到材料边界上的表面积分和上述表面量。本文提出了一个简单的推导,表明σb 和 κ→b 都包含在体积电荷或电流密度的表达式中,前提是发散和卷曲算子在边界处求值,以便考虑到界面处的不连续性。
Surface charge and surface current densities at material boundaries
In electromagnetism, materials with a polarization density P→ or a magnetization density M→ are known to exhibit a bound surface charge density σb=P→·n̂ or a surface current density κ→b=M→×n̂, respectively, where n̂ is the unit vector perpendicular to the material boundary surface, directed outward. These expressions can be obtained from volume integrations for the electric potential V, or the magnetic vector potential A→, in which the integrals are restricted to the material volumes delimited by their respective boundaries. In that case, applying the divergence theorem leads to surface integrals on material boundaries and to the above-mentioned surface quantities. In this paper, a simple derivation is presented, which shows that both σb and κ→b are included in the expressions for the volume charge or current densities, provided that the divergence and curl operators are evaluated at the boundary so as to account for discontinuities at interfaces.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.