磁性可伸缩茶叶提取物稳定钯纳米粒子在绿色条件下用于芳基溴与芳基肼的变性交叉偶联:双芳基合成的另一条途径

IF 3.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Sumanth Hegde, Aatika Nizam
{"title":"磁性可伸缩茶叶提取物稳定钯纳米粒子在绿色条件下用于芳基溴与芳基肼的变性交叉偶联:双芳基合成的另一条途径","authors":"Sumanth Hegde,&nbsp;Aatika Nizam","doi":"10.1016/j.catcom.2024.106862","DOIUrl":null,"url":null,"abstract":"<div><p>Novel palladium based magnetic nanocatalyst was synthesized by the co-precipitation method and coated with silica and tea extract as stabilizing agent. Palladation onto the prepared nanocomposite was done to get ION-SiO<sub>2</sub>/TE-Pd(0) catalyst. Our study is one of the limited number of studies reported for the catalytic denitrogenative coupling of arylbromide and arylhydrazine. This led to the construction of important substituted biaryls bearing various substituents with 82–92% yields. The synthesized nanocatalyst was characterized using structural and morphological characterization techniques. It was also observed that only 2 mol% of ION-SiO<sub>2</sub>/TE-Pd(0) catalyst was sufficient for the catalysis and reusable upto six cycles.</p></div>","PeriodicalId":263,"journal":{"name":"Catalysis Communications","volume":"187 ","pages":"Article 106862"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1566736724000220/pdfft?md5=ceafdee870a623dd04dc114aa0af2b37&pid=1-s2.0-S1566736724000220-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetically retractable tea extract stabilized palladium nanoparticles for denitrogenative cross-coupling of aryl bromides with arylhydrazines under green conditions: An alternate route for the biaryls synthesis\",\"authors\":\"Sumanth Hegde,&nbsp;Aatika Nizam\",\"doi\":\"10.1016/j.catcom.2024.106862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Novel palladium based magnetic nanocatalyst was synthesized by the co-precipitation method and coated with silica and tea extract as stabilizing agent. Palladation onto the prepared nanocomposite was done to get ION-SiO<sub>2</sub>/TE-Pd(0) catalyst. Our study is one of the limited number of studies reported for the catalytic denitrogenative coupling of arylbromide and arylhydrazine. This led to the construction of important substituted biaryls bearing various substituents with 82–92% yields. The synthesized nanocatalyst was characterized using structural and morphological characterization techniques. It was also observed that only 2 mol% of ION-SiO<sub>2</sub>/TE-Pd(0) catalyst was sufficient for the catalysis and reusable upto six cycles.</p></div>\",\"PeriodicalId\":263,\"journal\":{\"name\":\"Catalysis Communications\",\"volume\":\"187 \",\"pages\":\"Article 106862\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000220/pdfft?md5=ceafdee870a623dd04dc114aa0af2b37&pid=1-s2.0-S1566736724000220-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566736724000220\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566736724000220","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用共沉淀法合成了新型钯基磁性纳米催化剂,并以二氧化硅和茶叶提取物作为稳定剂进行了包覆。在制备的纳米复合材料上进行钯化,得到 ION-SiO2/TE-Pd(0) 催化剂。我们的研究是关于芳基溴和芳基肼催化脱氮偶联的少数研究之一。通过这项研究,我们以 82-92% 的收率合成了含有各种取代基的重要取代双芳基化合物。利用结构和形态表征技术对合成的纳米催化剂进行了表征。研究还发现,仅 2 摩尔%的 ION-SiO2/TE-Pd(0) 催化剂就足以进行催化,并且可重复使用长达六个循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetically retractable tea extract stabilized palladium nanoparticles for denitrogenative cross-coupling of aryl bromides with arylhydrazines under green conditions: An alternate route for the biaryls synthesis

Magnetically retractable tea extract stabilized palladium nanoparticles for denitrogenative cross-coupling of aryl bromides with arylhydrazines under green conditions: An alternate route for the biaryls synthesis

Magnetically retractable tea extract stabilized palladium nanoparticles for denitrogenative cross-coupling of aryl bromides with arylhydrazines under green conditions: An alternate route for the biaryls synthesis

Novel palladium based magnetic nanocatalyst was synthesized by the co-precipitation method and coated with silica and tea extract as stabilizing agent. Palladation onto the prepared nanocomposite was done to get ION-SiO2/TE-Pd(0) catalyst. Our study is one of the limited number of studies reported for the catalytic denitrogenative coupling of arylbromide and arylhydrazine. This led to the construction of important substituted biaryls bearing various substituents with 82–92% yields. The synthesized nanocatalyst was characterized using structural and morphological characterization techniques. It was also observed that only 2 mol% of ION-SiO2/TE-Pd(0) catalyst was sufficient for the catalysis and reusable upto six cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Communications
Catalysis Communications 化学-物理化学
CiteScore
6.20
自引率
2.70%
发文量
183
审稿时长
46 days
期刊介绍: Catalysis Communications aims to provide rapid publication of significant, novel, and timely research results homogeneous, heterogeneous, and enzymatic catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信