利用机器学习方法预测地震的新算法

N. Jarah, Abbas Hanon Hassin Alasadi, K. M. Hashim
{"title":"利用机器学习方法预测地震的新算法","authors":"N. Jarah, Abbas Hanon Hassin Alasadi, K. M. Hashim","doi":"10.3844/jcssp.2024.150.156","DOIUrl":null,"url":null,"abstract":": Seismic tremors are among the foremost perilous normal fiascos individuals confront due to their event without earlier caution and their effect on their lives and properties. In expansion, to consider future disaster prevention measures for major earthquakes, it is necessary to predict earthquakes using Neural Networks (NN). A machine learning technique has developed a technology to predict earthquakes from ground controller data by measuring ground vibration and transmitting data by a sensor network. Devices to process this data and record it in a catalog of seismic data from 1900-2019 for Iraq and neighboring regions, then divide this data into 80% training data and 20% test data. It gave better results than other prediction algorithms, where the NN model performs better Seismic prediction than other machine learning methods.","PeriodicalId":40005,"journal":{"name":"Journal of Computer Science","volume":"53 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Algorithm for Earthquake Prediction Using Machine Learning Methods\",\"authors\":\"N. Jarah, Abbas Hanon Hassin Alasadi, K. M. Hashim\",\"doi\":\"10.3844/jcssp.2024.150.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Seismic tremors are among the foremost perilous normal fiascos individuals confront due to their event without earlier caution and their effect on their lives and properties. In expansion, to consider future disaster prevention measures for major earthquakes, it is necessary to predict earthquakes using Neural Networks (NN). A machine learning technique has developed a technology to predict earthquakes from ground controller data by measuring ground vibration and transmitting data by a sensor network. Devices to process this data and record it in a catalog of seismic data from 1900-2019 for Iraq and neighboring regions, then divide this data into 80% training data and 20% test data. It gave better results than other prediction algorithms, where the NN model performs better Seismic prediction than other machine learning methods.\",\"PeriodicalId\":40005,\"journal\":{\"name\":\"Journal of Computer Science\",\"volume\":\"53 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jcssp.2024.150.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jcssp.2024.150.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:地震是人类面临的最危险的正常灾难之一,因为地震发生时没有提前采取预防措施,而且地震会对人们的生命和财产造成影响。在扩展过程中,为了考虑未来针对大地震的防灾措施,有必要使用神经网络(NN)预测地震。机器学习技术通过测量地面振动并通过传感器网络传输数据,开发了一种从地面控制器数据预测地震的技术。设备对这些数据进行处理,并将其记录在伊拉克及邻近地区 1900-2019 年的地震数据目录中,然后将这些数据分为 80% 的训练数据和 20% 的测试数据。与其他预测算法相比,NN 模型的地震预测效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Algorithm for Earthquake Prediction Using Machine Learning Methods
: Seismic tremors are among the foremost perilous normal fiascos individuals confront due to their event without earlier caution and their effect on their lives and properties. In expansion, to consider future disaster prevention measures for major earthquakes, it is necessary to predict earthquakes using Neural Networks (NN). A machine learning technique has developed a technology to predict earthquakes from ground controller data by measuring ground vibration and transmitting data by a sensor network. Devices to process this data and record it in a catalog of seismic data from 1900-2019 for Iraq and neighboring regions, then divide this data into 80% training data and 20% test data. It gave better results than other prediction algorithms, where the NN model performs better Seismic prediction than other machine learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Science
Journal of Computer Science Computer Science-Computer Networks and Communications
CiteScore
1.70
自引率
0.00%
发文量
92
期刊介绍: Journal of Computer Science is aimed to publish research articles on theoretical foundations of information and computation, and of practical techniques for their implementation and application in computer systems. JCS updated twelve times a year and is a peer reviewed journal covers the latest and most compelling research of the time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信