用于光子放射治疗的虚拟非增强双能计算机断层扫描:对剂量分布和基于锥形束计算机断层扫描的位置验证的影响

IF 3.4 Q2 ONCOLOGY
Maryam Afifah , Marloes C. Bulthuis , Karin N. Goudschaal , Jolanda M. Verbeek-Spijkerman , Tezontl S. Rosario , Duncan den Boer , Karel A. Hinnen , Arjan Bel , Zdenko van Kesteren
{"title":"用于光子放射治疗的虚拟非增强双能计算机断层扫描:对剂量分布和基于锥形束计算机断层扫描的位置验证的影响","authors":"Maryam Afifah ,&nbsp;Marloes C. Bulthuis ,&nbsp;Karin N. Goudschaal ,&nbsp;Jolanda M. Verbeek-Spijkerman ,&nbsp;Tezontl S. Rosario ,&nbsp;Duncan den Boer ,&nbsp;Karel A. Hinnen ,&nbsp;Arjan Bel ,&nbsp;Zdenko van Kesteren","doi":"10.1016/j.phro.2024.100545","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><p>Virtual Unenhanced images (VUE) from contrast-enhanced dual-energy computed tomography (DECT) eliminate manual suppression of contrast-enhanced structures (CES) or pre-contrast scans. CT intensity decreases in high-density structures outside the CES following VUE algorithm application. This study assesses VUE's impact on the radiotherapy workflow of gynecological tumors, comparing dose distribution and cone-beam CT-based (CBCT) position verification to contrast-enhanced CT (CECT) images.</p></div><div><h3>Materials and Methods</h3><p>A total of 14 gynecological patients with contrast-enhanced CT simulation were included. Two CT images were reconstructed: CECT and VUE. Volumetric Modulated Arc Therapy (VMAT) plans generated on CECT were recalculated on VUE using both the CECT lookup table (LUT) and a dedicated VUE LUT. Gamma analysis assessed 3D dose distributions. CECT and VUE images were retrospectively registered to daily CBCT using Chamfer matching algorithm..</p></div><div><h3>Results</h3><p>Planning target volume <strong>(</strong>PTV) dose agreement with CECT was within 0.35% for D<sub>2%</sub>, D<sub>mean</sub>, and D<sub>98%</sub>. Organs at risk (OARs) D<sub>2%</sub> agreed within 0.36%. A dedicated VUE LUT lead to smaller dose differences, achieving a 100% gamma pass rate for all subjects. VUE imaging showed similar translations and rotations to CECT, with significant but minor translation differences (&lt;0.02 cm). VUE-based registration outperformed CECT. In 24% of CBCT-CECT registrations, inadequate registration was observed due to contrast-related issues, while corresponding VUE images achieved clinically acceptable registrations.</p></div><div><h3>Conclusions</h3><p>VUE imaging in the radiotherapy workflow is feasible, showing comparable dose distributions and improved CBCT registration results compared to CECT. VUE enables automated bone registration, limiting inter-observer variation in the Image-Guided Radiation Therapy (IGRT) process.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000150/pdfft?md5=37c70830fa65a62f5a009711aa0a3200&pid=1-s2.0-S2405631624000150-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Virtual unenhanced dual-energy computed tomography for photon radiotherapy: The effect on dose distribution and cone-beam computed tomography based position verification\",\"authors\":\"Maryam Afifah ,&nbsp;Marloes C. Bulthuis ,&nbsp;Karin N. Goudschaal ,&nbsp;Jolanda M. Verbeek-Spijkerman ,&nbsp;Tezontl S. Rosario ,&nbsp;Duncan den Boer ,&nbsp;Karel A. Hinnen ,&nbsp;Arjan Bel ,&nbsp;Zdenko van Kesteren\",\"doi\":\"10.1016/j.phro.2024.100545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Purpose</h3><p>Virtual Unenhanced images (VUE) from contrast-enhanced dual-energy computed tomography (DECT) eliminate manual suppression of contrast-enhanced structures (CES) or pre-contrast scans. CT intensity decreases in high-density structures outside the CES following VUE algorithm application. This study assesses VUE's impact on the radiotherapy workflow of gynecological tumors, comparing dose distribution and cone-beam CT-based (CBCT) position verification to contrast-enhanced CT (CECT) images.</p></div><div><h3>Materials and Methods</h3><p>A total of 14 gynecological patients with contrast-enhanced CT simulation were included. Two CT images were reconstructed: CECT and VUE. Volumetric Modulated Arc Therapy (VMAT) plans generated on CECT were recalculated on VUE using both the CECT lookup table (LUT) and a dedicated VUE LUT. Gamma analysis assessed 3D dose distributions. CECT and VUE images were retrospectively registered to daily CBCT using Chamfer matching algorithm..</p></div><div><h3>Results</h3><p>Planning target volume <strong>(</strong>PTV) dose agreement with CECT was within 0.35% for D<sub>2%</sub>, D<sub>mean</sub>, and D<sub>98%</sub>. Organs at risk (OARs) D<sub>2%</sub> agreed within 0.36%. A dedicated VUE LUT lead to smaller dose differences, achieving a 100% gamma pass rate for all subjects. VUE imaging showed similar translations and rotations to CECT, with significant but minor translation differences (&lt;0.02 cm). VUE-based registration outperformed CECT. In 24% of CBCT-CECT registrations, inadequate registration was observed due to contrast-related issues, while corresponding VUE images achieved clinically acceptable registrations.</p></div><div><h3>Conclusions</h3><p>VUE imaging in the radiotherapy workflow is feasible, showing comparable dose distributions and improved CBCT registration results compared to CECT. VUE enables automated bone registration, limiting inter-observer variation in the Image-Guided Radiation Therapy (IGRT) process.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000150/pdfft?md5=37c70830fa65a62f5a009711aa0a3200&pid=1-s2.0-S2405631624000150-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的对比增强双能计算机断层扫描(DECT)的虚拟未增强图像(VUE)无需手动抑制对比增强结构(CES)或预对比扫描。应用 VUE 算法后,CES 以外的高密度结构的 CT 强度会降低。本研究评估了 VUE 对妇科肿瘤放疗工作流程的影响,比较了剂量分布和基于锥束 CT 的位置验证与对比增强 CT(CECT)图像。对两种 CT 图像进行了重建:CECT和VUE。使用CECT查找表(LUT)和专用的VUE查找表在VUE上重新计算在CECT上生成的容积调制弧治疗(VMAT)计划。伽玛分析评估了三维剂量分布。使用倒角匹配算法将 CECT 和 VUE 图像与日常 CBCT 图像进行回溯注册。结果规划靶体积(PTV)剂量与 CECT 的 D2%、Dmean 和 D98% 的一致性在 0.35% 以内。高危器官(OARs)D2%的一致性在0.36%以内。专用的 VUE LUT 导致的剂量差异较小,所有受试者的伽马通过率均达到 100%。VUE 成像显示的平移和旋转与 CECT 相似,平移差异显著但较小(0.02 厘米)。基于 VUE 的配准优于 CECT。在24%的CBCT-CECT配准中,由于对比度相关问题导致配准不足,而相应的VUE图像则达到了临床上可接受的配准。VUE 实现了骨骼自动配准,限制了图像引导放射治疗 (IGRT) 过程中观察者之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual unenhanced dual-energy computed tomography for photon radiotherapy: The effect on dose distribution and cone-beam computed tomography based position verification

Background and Purpose

Virtual Unenhanced images (VUE) from contrast-enhanced dual-energy computed tomography (DECT) eliminate manual suppression of contrast-enhanced structures (CES) or pre-contrast scans. CT intensity decreases in high-density structures outside the CES following VUE algorithm application. This study assesses VUE's impact on the radiotherapy workflow of gynecological tumors, comparing dose distribution and cone-beam CT-based (CBCT) position verification to contrast-enhanced CT (CECT) images.

Materials and Methods

A total of 14 gynecological patients with contrast-enhanced CT simulation were included. Two CT images were reconstructed: CECT and VUE. Volumetric Modulated Arc Therapy (VMAT) plans generated on CECT were recalculated on VUE using both the CECT lookup table (LUT) and a dedicated VUE LUT. Gamma analysis assessed 3D dose distributions. CECT and VUE images were retrospectively registered to daily CBCT using Chamfer matching algorithm..

Results

Planning target volume (PTV) dose agreement with CECT was within 0.35% for D2%, Dmean, and D98%. Organs at risk (OARs) D2% agreed within 0.36%. A dedicated VUE LUT lead to smaller dose differences, achieving a 100% gamma pass rate for all subjects. VUE imaging showed similar translations and rotations to CECT, with significant but minor translation differences (<0.02 cm). VUE-based registration outperformed CECT. In 24% of CBCT-CECT registrations, inadequate registration was observed due to contrast-related issues, while corresponding VUE images achieved clinically acceptable registrations.

Conclusions

VUE imaging in the radiotherapy workflow is feasible, showing comparable dose distributions and improved CBCT registration results compared to CECT. VUE enables automated bone registration, limiting inter-observer variation in the Image-Guided Radiation Therapy (IGRT) process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信