Villegas Rivas, José M. Palacios Sánchez, Cristina A. Alzamora Rivero, Carlos M. Franco, César Del Carpio, Osorio Carrera, Martín Grados Vásquez, Luis Ramírez, Luis E. Cruz Calderón, Karin Ponce Salinas, Liliana Correa Rojas, José Jorge Rodríguez Rojas, Cáceres Figueroa, Felicia L Narrea, Saravia Pachas, Arrieta Benoutt, Arturo N. Neyra Felipe, Pedro E Flores, Carlos Fabián Zata Pupuche, Yolanda Maribel Falcón, Mercedes Chipana, Marilú T Fernández, Asunción R Flores Lezama, Pablo V Lezcano Tello, Víctor Aguilar Chávez, Hugo Fernández, Francisco Rosas, Alejandro Espinoza, Gaby Polo, Esther Chunga, M. Pingo, Carolina Merejildo, Carlos Vera, Alfredo Cerna, Luis Muñoz, Orlando Miranda, Miguel Diaz, Ángel Hernández, Martín López, Desiderio Vejarano, Erick Campos, Delgado Bazán, Zadith Garrido, José Paredes Campaña, Leyli J. Aguilar Carranza, Graciela M. Monroy Ventura, Ruth A. Chicana Correa, Jhonny Richard Becerra, Rafael Rodriguez Barboza, Damián Villón, Claudia Prieto, Rosalía Villón, Mariella M Prieto, Qui
{"title":"农业试验中线性模型的共线性指数比较","authors":"Villegas Rivas, José M. Palacios Sánchez, Cristina A. Alzamora Rivero, Carlos M. Franco, César Del Carpio, Osorio Carrera, Martín Grados Vásquez, Luis Ramírez, Luis E. Cruz Calderón, Karin Ponce Salinas, Liliana Correa Rojas, José Jorge Rodríguez Rojas, Cáceres Figueroa, Felicia L Narrea, Saravia Pachas, Arrieta Benoutt, Arturo N. Neyra Felipe, Pedro E Flores, Carlos Fabián Zata Pupuche, Yolanda Maribel Falcón, Mercedes Chipana, Marilú T Fernández, Asunción R Flores Lezama, Pablo V Lezcano Tello, Víctor Aguilar Chávez, Hugo Fernández, Francisco Rosas, Alejandro Espinoza, Gaby Polo, Esther Chunga, M. Pingo, Carolina Merejildo, Carlos Vera, Alfredo Cerna, Luis Muñoz, Orlando Miranda, Miguel Diaz, Ángel Hernández, Martín López, Desiderio Vejarano, Erick Campos, Delgado Bazán, Zadith Garrido, José Paredes Campaña, Leyli J. Aguilar Carranza, Graciela M. Monroy Ventura, Ruth A. Chicana Correa, Jhonny Richard Becerra, Rafael Rodriguez Barboza, Damián Villón, Claudia Prieto, Rosalía Villón, Mariella M Prieto, Qui","doi":"10.3844/ojbsci.2024.195.207","DOIUrl":null,"url":null,"abstract":": The deleterious consequences of collinearity in linear regression on the precision of estimators of regression coefficients and the interpretability of the fitted model are widely recognized. In this study, we compare several methodologies for assessing collinearity in linear models and explore the effect of outliers on collinearity. The robustness of collinearity measures (individual and overall) is validated through two detailed Monte Carlo simulation study which also considers the effect of outliers on collinearity indices. The methods are illustrated with two real-world agricultural and fish morphology l data sets to show potential applications. The results do not provide any evidence for an effect from outliers on collinearity identification using the collinearity indices (individual and overall). The FG and F j collinearity indices more robust as both sample size and collinearity degree increase. The VIF (individual measure) had a better performance on the fitted model with a greater number of parameters.","PeriodicalId":35048,"journal":{"name":"OnLine Journal of Biological Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Collinearity Indices for Linear Models in Agricultural Trials\",\"authors\":\"Villegas Rivas, José M. Palacios Sánchez, Cristina A. Alzamora Rivero, Carlos M. Franco, César Del Carpio, Osorio Carrera, Martín Grados Vásquez, Luis Ramírez, Luis E. Cruz Calderón, Karin Ponce Salinas, Liliana Correa Rojas, José Jorge Rodríguez Rojas, Cáceres Figueroa, Felicia L Narrea, Saravia Pachas, Arrieta Benoutt, Arturo N. Neyra Felipe, Pedro E Flores, Carlos Fabián Zata Pupuche, Yolanda Maribel Falcón, Mercedes Chipana, Marilú T Fernández, Asunción R Flores Lezama, Pablo V Lezcano Tello, Víctor Aguilar Chávez, Hugo Fernández, Francisco Rosas, Alejandro Espinoza, Gaby Polo, Esther Chunga, M. Pingo, Carolina Merejildo, Carlos Vera, Alfredo Cerna, Luis Muñoz, Orlando Miranda, Miguel Diaz, Ángel Hernández, Martín López, Desiderio Vejarano, Erick Campos, Delgado Bazán, Zadith Garrido, José Paredes Campaña, Leyli J. Aguilar Carranza, Graciela M. Monroy Ventura, Ruth A. Chicana Correa, Jhonny Richard Becerra, Rafael Rodriguez Barboza, Damián Villón, Claudia Prieto, Rosalía Villón, Mariella M Prieto, Qui\",\"doi\":\"10.3844/ojbsci.2024.195.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The deleterious consequences of collinearity in linear regression on the precision of estimators of regression coefficients and the interpretability of the fitted model are widely recognized. In this study, we compare several methodologies for assessing collinearity in linear models and explore the effect of outliers on collinearity. The robustness of collinearity measures (individual and overall) is validated through two detailed Monte Carlo simulation study which also considers the effect of outliers on collinearity indices. The methods are illustrated with two real-world agricultural and fish morphology l data sets to show potential applications. The results do not provide any evidence for an effect from outliers on collinearity identification using the collinearity indices (individual and overall). The FG and F j collinearity indices more robust as both sample size and collinearity degree increase. The VIF (individual measure) had a better performance on the fitted model with a greater number of parameters.\",\"PeriodicalId\":35048,\"journal\":{\"name\":\"OnLine Journal of Biological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OnLine Journal of Biological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/ojbsci.2024.195.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OnLine Journal of Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ojbsci.2024.195.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
摘要
:线性回归中的共线性对回归系数估计值的精确性和拟合模型的可解释性的有害影响已得到广泛认可。在本研究中,我们比较了几种评估线性模型中共线性的方法,并探讨了异常值对共线性的影响。通过两项详细的蒙特卡罗模拟研究,验证了共线性度量(单个和整体)的稳健性,研究还考虑了异常值对共线性指数的影响。通过两个真实世界的农业和鱼类形态数据集来说明这些方法的潜在应用。研究结果没有提供任何证据表明离群值对使用共线性指数(单个指数和总体指数)进行共线性识别有影响。随着样本量和共线性程度的增加,FG 和 F j 共线性指数更加稳健。对于参数数量较多的拟合模型,VIF(单个度量)的表现更好。
Comparison of Collinearity Indices for Linear Models in Agricultural Trials
: The deleterious consequences of collinearity in linear regression on the precision of estimators of regression coefficients and the interpretability of the fitted model are widely recognized. In this study, we compare several methodologies for assessing collinearity in linear models and explore the effect of outliers on collinearity. The robustness of collinearity measures (individual and overall) is validated through two detailed Monte Carlo simulation study which also considers the effect of outliers on collinearity indices. The methods are illustrated with two real-world agricultural and fish morphology l data sets to show potential applications. The results do not provide any evidence for an effect from outliers on collinearity identification using the collinearity indices (individual and overall). The FG and F j collinearity indices more robust as both sample size and collinearity degree increase. The VIF (individual measure) had a better performance on the fitted model with a greater number of parameters.