农业试验中线性模型的共线性指数比较

Q3 Agricultural and Biological Sciences
Villegas Rivas, José M. Palacios Sánchez, Cristina A. Alzamora Rivero, Carlos M. Franco, César Del Carpio, Osorio Carrera, Martín Grados Vásquez, Luis Ramírez, Luis E. Cruz Calderón, Karin Ponce Salinas, Liliana Correa Rojas, José Jorge Rodríguez Rojas, Cáceres Figueroa, Felicia L Narrea, Saravia Pachas, Arrieta Benoutt, Arturo N. Neyra Felipe, Pedro E Flores, Carlos Fabián Zata Pupuche, Yolanda Maribel Falcón, Mercedes Chipana, Marilú T Fernández, Asunción R Flores Lezama, Pablo V Lezcano Tello, Víctor Aguilar Chávez, Hugo Fernández, Francisco Rosas, Alejandro Espinoza, Gaby Polo, Esther Chunga, M. Pingo, Carolina Merejildo, Carlos Vera, Alfredo Cerna, Luis Muñoz, Orlando Miranda, Miguel Diaz, Ángel Hernández, Martín López, Desiderio Vejarano, Erick Campos, Delgado Bazán, Zadith Garrido, José Paredes Campaña, Leyli J. Aguilar Carranza, Graciela M. Monroy Ventura, Ruth A. Chicana Correa, Jhonny Richard Becerra, Rafael Rodriguez Barboza, Damián Villón, Claudia Prieto, Rosalía Villón, Mariella M Prieto, Qui
{"title":"农业试验中线性模型的共线性指数比较","authors":"Villegas Rivas, José M. Palacios Sánchez, Cristina A. Alzamora Rivero, Carlos M. Franco, César Del Carpio, Osorio Carrera, Martín Grados Vásquez, Luis Ramírez, Luis E. Cruz Calderón, Karin Ponce Salinas, Liliana Correa Rojas, José Jorge Rodríguez Rojas, Cáceres Figueroa, Felicia L Narrea, Saravia Pachas, Arrieta Benoutt, Arturo N. Neyra Felipe, Pedro E Flores, Carlos Fabián Zata Pupuche, Yolanda Maribel Falcón, Mercedes Chipana, Marilú T Fernández, Asunción R Flores Lezama, Pablo V Lezcano Tello, Víctor Aguilar Chávez, Hugo Fernández, Francisco Rosas, Alejandro Espinoza, Gaby Polo, Esther Chunga, M. Pingo, Carolina Merejildo, Carlos Vera, Alfredo Cerna, Luis Muñoz, Orlando Miranda, Miguel Diaz, Ángel Hernández, Martín López, Desiderio Vejarano, Erick Campos, Delgado Bazán, Zadith Garrido, José Paredes Campaña, Leyli J. Aguilar Carranza, Graciela M. Monroy Ventura, Ruth A. Chicana Correa, Jhonny Richard Becerra, Rafael Rodriguez Barboza, Damián Villón, Claudia Prieto, Rosalía Villón, Mariella M Prieto, Qui","doi":"10.3844/ojbsci.2024.195.207","DOIUrl":null,"url":null,"abstract":": The deleterious consequences of collinearity in linear regression on the precision of estimators of regression coefficients and the interpretability of the fitted model are widely recognized. In this study, we compare several methodologies for assessing collinearity in linear models and explore the effect of outliers on collinearity. The robustness of collinearity measures (individual and overall) is validated through two detailed Monte Carlo simulation study which also considers the effect of outliers on collinearity indices. The methods are illustrated with two real-world agricultural and fish morphology l data sets to show potential applications. The results do not provide any evidence for an effect from outliers on collinearity identification using the collinearity indices (individual and overall). The FG and F j collinearity indices more robust as both sample size and collinearity degree increase. The VIF (individual measure) had a better performance on the fitted model with a greater number of parameters.","PeriodicalId":35048,"journal":{"name":"OnLine Journal of Biological Sciences","volume":"52 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Collinearity Indices for Linear Models in Agricultural Trials\",\"authors\":\"Villegas Rivas, José M. Palacios Sánchez, Cristina A. Alzamora Rivero, Carlos M. Franco, César Del Carpio, Osorio Carrera, Martín Grados Vásquez, Luis Ramírez, Luis E. Cruz Calderón, Karin Ponce Salinas, Liliana Correa Rojas, José Jorge Rodríguez Rojas, Cáceres Figueroa, Felicia L Narrea, Saravia Pachas, Arrieta Benoutt, Arturo N. Neyra Felipe, Pedro E Flores, Carlos Fabián Zata Pupuche, Yolanda Maribel Falcón, Mercedes Chipana, Marilú T Fernández, Asunción R Flores Lezama, Pablo V Lezcano Tello, Víctor Aguilar Chávez, Hugo Fernández, Francisco Rosas, Alejandro Espinoza, Gaby Polo, Esther Chunga, M. Pingo, Carolina Merejildo, Carlos Vera, Alfredo Cerna, Luis Muñoz, Orlando Miranda, Miguel Diaz, Ángel Hernández, Martín López, Desiderio Vejarano, Erick Campos, Delgado Bazán, Zadith Garrido, José Paredes Campaña, Leyli J. Aguilar Carranza, Graciela M. Monroy Ventura, Ruth A. Chicana Correa, Jhonny Richard Becerra, Rafael Rodriguez Barboza, Damián Villón, Claudia Prieto, Rosalía Villón, Mariella M Prieto, Qui\",\"doi\":\"10.3844/ojbsci.2024.195.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The deleterious consequences of collinearity in linear regression on the precision of estimators of regression coefficients and the interpretability of the fitted model are widely recognized. In this study, we compare several methodologies for assessing collinearity in linear models and explore the effect of outliers on collinearity. The robustness of collinearity measures (individual and overall) is validated through two detailed Monte Carlo simulation study which also considers the effect of outliers on collinearity indices. The methods are illustrated with two real-world agricultural and fish morphology l data sets to show potential applications. The results do not provide any evidence for an effect from outliers on collinearity identification using the collinearity indices (individual and overall). The FG and F j collinearity indices more robust as both sample size and collinearity degree increase. The VIF (individual measure) had a better performance on the fitted model with a greater number of parameters.\",\"PeriodicalId\":35048,\"journal\":{\"name\":\"OnLine Journal of Biological Sciences\",\"volume\":\"52 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OnLine Journal of Biological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/ojbsci.2024.195.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OnLine Journal of Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ojbsci.2024.195.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

:线性回归中的共线性对回归系数估计值的精确性和拟合模型的可解释性的有害影响已得到广泛认可。在本研究中,我们比较了几种评估线性模型中共线性的方法,并探讨了异常值对共线性的影响。通过两项详细的蒙特卡罗模拟研究,验证了共线性度量(单个和整体)的稳健性,研究还考虑了异常值对共线性指数的影响。通过两个真实世界的农业和鱼类形态数据集来说明这些方法的潜在应用。研究结果没有提供任何证据表明离群值对使用共线性指数(单个指数和总体指数)进行共线性识别有影响。随着样本量和共线性程度的增加,FG 和 F j 共线性指数更加稳健。对于参数数量较多的拟合模型,VIF(单个度量)的表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Collinearity Indices for Linear Models in Agricultural Trials
: The deleterious consequences of collinearity in linear regression on the precision of estimators of regression coefficients and the interpretability of the fitted model are widely recognized. In this study, we compare several methodologies for assessing collinearity in linear models and explore the effect of outliers on collinearity. The robustness of collinearity measures (individual and overall) is validated through two detailed Monte Carlo simulation study which also considers the effect of outliers on collinearity indices. The methods are illustrated with two real-world agricultural and fish morphology l data sets to show potential applications. The results do not provide any evidence for an effect from outliers on collinearity identification using the collinearity indices (individual and overall). The FG and F j collinearity indices more robust as both sample size and collinearity degree increase. The VIF (individual measure) had a better performance on the fitted model with a greater number of parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
OnLine Journal of Biological Sciences
OnLine Journal of Biological Sciences Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
35
期刊介绍: :: Cell biology :: Developmental biology :: Structural biology :: Microbiology :: Molecular biology & genetics :: Biochemistry :: Biotechnology :: Biodiversity :: Ecology :: Marine biology :: Plant biology :: Bioinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信