用于 Heliostat 实例分割的深度学习方法

Benjamin Liu, Alexander Sonn, Anthony Roy, Brian Brewington
{"title":"用于 Heliostat 实例分割的深度学习方法","authors":"Benjamin Liu, Alexander Sonn, Anthony Roy, Brian Brewington","doi":"10.52825/solarpaces.v1i.735","DOIUrl":null,"url":null,"abstract":"Heliostat instance segmentation (HST-IS) is a crucial component of the heliostat tracking system at Heliogen’s Lancaster test facility. The system estimates the mirror normal of each heliostat by performing a nonlinear optimization-based fitting strategy using approximations of the non-shaded, non-blocked sunlit pixels on each heliostat, and the tracking system uses these estimates to improve performance. \nHST-IS is fundamentally challenging due to variability in lighting conditions and heliostat size relative to the capturing camera. Deep learning-based convolutional neural networks (CNN) have emerged in recent years by demonstrating noteworthy precision in tasks such as object recognition, detection, and segmentation. CNN-based methods offer a robust augmentation to HST-IS methods as they capture a context-less hierarchy of image features. \nIn this study, we developed deep learning models to automatically segment heliostat instances from elevated images taken from the field. We study various image parameters and architectural customizations to optimize for scalability, robustness, and accuracy in our predictions. We perform robust evaluations of our best model to quantify gaps between model development and real-world deployment and provide evidence for utility in the field.","PeriodicalId":506238,"journal":{"name":"SolarPACES Conference Proceedings","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Method for Heliostat Instance Segmentation\",\"authors\":\"Benjamin Liu, Alexander Sonn, Anthony Roy, Brian Brewington\",\"doi\":\"10.52825/solarpaces.v1i.735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heliostat instance segmentation (HST-IS) is a crucial component of the heliostat tracking system at Heliogen’s Lancaster test facility. The system estimates the mirror normal of each heliostat by performing a nonlinear optimization-based fitting strategy using approximations of the non-shaded, non-blocked sunlit pixels on each heliostat, and the tracking system uses these estimates to improve performance. \\nHST-IS is fundamentally challenging due to variability in lighting conditions and heliostat size relative to the capturing camera. Deep learning-based convolutional neural networks (CNN) have emerged in recent years by demonstrating noteworthy precision in tasks such as object recognition, detection, and segmentation. CNN-based methods offer a robust augmentation to HST-IS methods as they capture a context-less hierarchy of image features. \\nIn this study, we developed deep learning models to automatically segment heliostat instances from elevated images taken from the field. We study various image parameters and architectural customizations to optimize for scalability, robustness, and accuracy in our predictions. We perform robust evaluations of our best model to quantify gaps between model development and real-world deployment and provide evidence for utility in the field.\",\"PeriodicalId\":506238,\"journal\":{\"name\":\"SolarPACES Conference Proceedings\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SolarPACES Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52825/solarpaces.v1i.735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SolarPACES Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/solarpaces.v1i.735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

定日镜实例分割(HST-IS)是太阳源公司兰开斯特测试设施的定日镜跟踪系统的重要组成部分。该系统利用每个定日镜上无阴影、无遮挡的阳光像素的近似值,通过执行基于非线性优化的拟合策略来估计每个定日镜的镜面法线,跟踪系统利用这些估计值来提高性能。由于光照条件和定日镜相对于捕捉相机的尺寸存在差异,因此 HST-IS 从根本上就具有挑战性。基于深度学习的卷积神经网络(CNN)近年来异军突起,在物体识别、检测和分割等任务中表现出了显著的精确性。基于卷积神经网络的方法可为 HST-IS 方法提供强大的增强功能,因为它们能捕捉无上下文层次的图像特征。在本研究中,我们开发了深度学习模型,用于从实地拍摄的高架图像中自动分割定日镜实例。我们研究了各种图像参数和架构定制,以优化预测的可扩展性、鲁棒性和准确性。我们对最佳模型进行了稳健评估,以量化模型开发与实际部署之间的差距,并为实地应用提供证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Method for Heliostat Instance Segmentation
Heliostat instance segmentation (HST-IS) is a crucial component of the heliostat tracking system at Heliogen’s Lancaster test facility. The system estimates the mirror normal of each heliostat by performing a nonlinear optimization-based fitting strategy using approximations of the non-shaded, non-blocked sunlit pixels on each heliostat, and the tracking system uses these estimates to improve performance. HST-IS is fundamentally challenging due to variability in lighting conditions and heliostat size relative to the capturing camera. Deep learning-based convolutional neural networks (CNN) have emerged in recent years by demonstrating noteworthy precision in tasks such as object recognition, detection, and segmentation. CNN-based methods offer a robust augmentation to HST-IS methods as they capture a context-less hierarchy of image features. In this study, we developed deep learning models to automatically segment heliostat instances from elevated images taken from the field. We study various image parameters and architectural customizations to optimize for scalability, robustness, and accuracy in our predictions. We perform robust evaluations of our best model to quantify gaps between model development and real-world deployment and provide evidence for utility in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信