Benjamin Liu, Alexander Sonn, Anthony Roy, Brian Brewington
{"title":"用于 Heliostat 实例分割的深度学习方法","authors":"Benjamin Liu, Alexander Sonn, Anthony Roy, Brian Brewington","doi":"10.52825/solarpaces.v1i.735","DOIUrl":null,"url":null,"abstract":"Heliostat instance segmentation (HST-IS) is a crucial component of the heliostat tracking system at Heliogen’s Lancaster test facility. The system estimates the mirror normal of each heliostat by performing a nonlinear optimization-based fitting strategy using approximations of the non-shaded, non-blocked sunlit pixels on each heliostat, and the tracking system uses these estimates to improve performance. \nHST-IS is fundamentally challenging due to variability in lighting conditions and heliostat size relative to the capturing camera. Deep learning-based convolutional neural networks (CNN) have emerged in recent years by demonstrating noteworthy precision in tasks such as object recognition, detection, and segmentation. CNN-based methods offer a robust augmentation to HST-IS methods as they capture a context-less hierarchy of image features. \nIn this study, we developed deep learning models to automatically segment heliostat instances from elevated images taken from the field. We study various image parameters and architectural customizations to optimize for scalability, robustness, and accuracy in our predictions. We perform robust evaluations of our best model to quantify gaps between model development and real-world deployment and provide evidence for utility in the field.","PeriodicalId":506238,"journal":{"name":"SolarPACES Conference Proceedings","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning Method for Heliostat Instance Segmentation\",\"authors\":\"Benjamin Liu, Alexander Sonn, Anthony Roy, Brian Brewington\",\"doi\":\"10.52825/solarpaces.v1i.735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heliostat instance segmentation (HST-IS) is a crucial component of the heliostat tracking system at Heliogen’s Lancaster test facility. The system estimates the mirror normal of each heliostat by performing a nonlinear optimization-based fitting strategy using approximations of the non-shaded, non-blocked sunlit pixels on each heliostat, and the tracking system uses these estimates to improve performance. \\nHST-IS is fundamentally challenging due to variability in lighting conditions and heliostat size relative to the capturing camera. Deep learning-based convolutional neural networks (CNN) have emerged in recent years by demonstrating noteworthy precision in tasks such as object recognition, detection, and segmentation. CNN-based methods offer a robust augmentation to HST-IS methods as they capture a context-less hierarchy of image features. \\nIn this study, we developed deep learning models to automatically segment heliostat instances from elevated images taken from the field. We study various image parameters and architectural customizations to optimize for scalability, robustness, and accuracy in our predictions. We perform robust evaluations of our best model to quantify gaps between model development and real-world deployment and provide evidence for utility in the field.\",\"PeriodicalId\":506238,\"journal\":{\"name\":\"SolarPACES Conference Proceedings\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SolarPACES Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52825/solarpaces.v1i.735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SolarPACES Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/solarpaces.v1i.735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Method for Heliostat Instance Segmentation
Heliostat instance segmentation (HST-IS) is a crucial component of the heliostat tracking system at Heliogen’s Lancaster test facility. The system estimates the mirror normal of each heliostat by performing a nonlinear optimization-based fitting strategy using approximations of the non-shaded, non-blocked sunlit pixels on each heliostat, and the tracking system uses these estimates to improve performance.
HST-IS is fundamentally challenging due to variability in lighting conditions and heliostat size relative to the capturing camera. Deep learning-based convolutional neural networks (CNN) have emerged in recent years by demonstrating noteworthy precision in tasks such as object recognition, detection, and segmentation. CNN-based methods offer a robust augmentation to HST-IS methods as they capture a context-less hierarchy of image features.
In this study, we developed deep learning models to automatically segment heliostat instances from elevated images taken from the field. We study various image parameters and architectural customizations to optimize for scalability, robustness, and accuracy in our predictions. We perform robust evaluations of our best model to quantify gaps between model development and real-world deployment and provide evidence for utility in the field.