低能 Cs+ 离子诱导 PADC 聚合物溅射破碎的质谱研究。

IF 1.9 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Muhammad Sabbtain Abbas, Bilal Jehanzaib, Shahzad Hussain, Abid Mahmood, Riaz Ahmad
{"title":"低能 Cs+ 离子诱导 PADC 聚合物溅射破碎的质谱研究。","authors":"Muhammad Sabbtain Abbas,&nbsp;Bilal Jehanzaib,&nbsp;Shahzad Hussain,&nbsp;Abid Mahmood,&nbsp;Riaz Ahmad","doi":"10.1002/jms.5002","DOIUrl":null,"url":null,"abstract":"<p>In this study, low-energy cesium (Cs<sup>+</sup>) ion-induced sputtered fragmentation of poly allyl diglycol carbonate (PADC) was investigated using mass spectrometry. The collision-induced dissociation mechanism revealed emission of various fragments, including monoatomic (H<sup>−</sup>, C<sub>1</sub><sup>−</sup>, O<sub>1</sub><sup>−</sup>), diatomic (C<sub>2</sub><sup>−</sup>), and multiatomic (C<sub>3</sub><sup>−</sup>, CO<sub>2</sub><sup>−</sup>, C<sub>2</sub>O<sub>2</sub><sup>−</sup>, C<sub>3</sub>O<sub>2</sub><sup>−</sup>) species within the Cs<sup>+</sup> ion energy range of 1–5 keV. The anion current of these fragments exhibited a linear increase with rising incident Cs<sup>+</sup> ion energy, indicating a corresponding rise in fragment abundance. Analysis of normalized yield indicated that at 1 keV incident energy, the dominant fragment was monoatomic hydrogen (H<sup>−</sup>), followed by diatomic carbon (C<sub>2</sub><sup>−</sup>), monoatomic carbon (C<sub>1</sub><sup>−</sup>), and monoatomic oxygen (O<sub>1</sub><sup>−</sup>). Although C<sub>2</sub><sup>−</sup> remained dominant up to 5 keV, other fragments exhibited varying normalized yields at different ion energy steps. The sputter yield estimation revealed that monoatomic hydrogen (H<sup>−</sup>) and diatomic carbon (C<sub>2</sub><sup>−</sup>) exhibited the highest yields, increasing exponentially beyond 3 keV, while multiatomic fragments like C<sub>3</sub><sup>−</sup>, CO<sub>2</sub><sup>−</sup>, C<sub>2</sub>O<sub>2</sub><sup>−</sup>, and C<sub>3</sub>O<sub>2</sub><sup>−</sup> displayed the lowest yields. The sputter dissociation mechanism pointed to dehydrogenation, chain scission, and bond breakage as the primary processes during low-energy Cs<sup>+</sup> ion impact. Postsputtering Scanning Electron Mircoscope (SEM) micrographs show craters, pits, and micropores on the PADC surface, indicating significant surface degradation. X-ray Diffraction (XRD) spectra exhibited reduced diffraction intensity, while Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated the absence of molecular bands in the IR spectrum, confirming extensive surface damage due to Cs<sup>+</sup> ion-induced sputtering.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass spectrometric study of low energy Cs+ ion-induced sputtered fragmentation of PADC polymer\",\"authors\":\"Muhammad Sabbtain Abbas,&nbsp;Bilal Jehanzaib,&nbsp;Shahzad Hussain,&nbsp;Abid Mahmood,&nbsp;Riaz Ahmad\",\"doi\":\"10.1002/jms.5002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, low-energy cesium (Cs<sup>+</sup>) ion-induced sputtered fragmentation of poly allyl diglycol carbonate (PADC) was investigated using mass spectrometry. The collision-induced dissociation mechanism revealed emission of various fragments, including monoatomic (H<sup>−</sup>, C<sub>1</sub><sup>−</sup>, O<sub>1</sub><sup>−</sup>), diatomic (C<sub>2</sub><sup>−</sup>), and multiatomic (C<sub>3</sub><sup>−</sup>, CO<sub>2</sub><sup>−</sup>, C<sub>2</sub>O<sub>2</sub><sup>−</sup>, C<sub>3</sub>O<sub>2</sub><sup>−</sup>) species within the Cs<sup>+</sup> ion energy range of 1–5 keV. The anion current of these fragments exhibited a linear increase with rising incident Cs<sup>+</sup> ion energy, indicating a corresponding rise in fragment abundance. Analysis of normalized yield indicated that at 1 keV incident energy, the dominant fragment was monoatomic hydrogen (H<sup>−</sup>), followed by diatomic carbon (C<sub>2</sub><sup>−</sup>), monoatomic carbon (C<sub>1</sub><sup>−</sup>), and monoatomic oxygen (O<sub>1</sub><sup>−</sup>). Although C<sub>2</sub><sup>−</sup> remained dominant up to 5 keV, other fragments exhibited varying normalized yields at different ion energy steps. The sputter yield estimation revealed that monoatomic hydrogen (H<sup>−</sup>) and diatomic carbon (C<sub>2</sub><sup>−</sup>) exhibited the highest yields, increasing exponentially beyond 3 keV, while multiatomic fragments like C<sub>3</sub><sup>−</sup>, CO<sub>2</sub><sup>−</sup>, C<sub>2</sub>O<sub>2</sub><sup>−</sup>, and C<sub>3</sub>O<sub>2</sub><sup>−</sup> displayed the lowest yields. The sputter dissociation mechanism pointed to dehydrogenation, chain scission, and bond breakage as the primary processes during low-energy Cs<sup>+</sup> ion impact. Postsputtering Scanning Electron Mircoscope (SEM) micrographs show craters, pits, and micropores on the PADC surface, indicating significant surface degradation. X-ray Diffraction (XRD) spectra exhibited reduced diffraction intensity, while Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated the absence of molecular bands in the IR spectrum, confirming extensive surface damage due to Cs<sup>+</sup> ion-induced sputtering.</p>\",\"PeriodicalId\":16178,\"journal\":{\"name\":\"Journal of Mass Spectrometry\",\"volume\":\"59 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jms.5002\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5002","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用质谱法研究了低能铯(Cs+)离子诱导的聚烯丙基二甘醇碳酸酯(PADC)溅射碎片。碰撞诱导的解离机制揭示了在 1-5 keV 的 Cs+ 离子能量范围内发射的各种碎片,包括单原子(H- , C1 - , O1 - )、双原子(C2 - )和多原子(C3 - , CO2 - , C2 O2 - , C3 O2 - )。随着入射 Cs+ 离子能量的增加,这些碎片的阴离子电流呈线性增加,表明碎片丰度也相应增加。归一化产率分析表明,入射能量为 1 千伏时,主要碎片是单原子氢(H-),其次是二原子碳(C2-)、单原子碳(C1-)和单原子氧(O1-)。虽然 C2 - 在 5 千伏以下仍占主导地位,但其他碎片在不同离子能量级表现出不同的归一化产率。溅射产率估算显示,单原子氢(H-)和双原子碳(C2-)的产率最高,在 3 keV 以上呈指数增长,而 C3 -、CO2 -、C2 O2 - 和 C3 O2 - 等多原子碎片的产率最低。溅射解离机制表明,在低能量 Cs+ 离子撞击过程中,脱氢、链断裂和键断裂是主要过程。溅射后扫描电子显微镜(SEM)显微照片显示,PADC 表面出现了坑洞、凹坑和微孔,表明其表面发生了严重降解。X 射线衍射 (XRD) 光谱显示衍射强度降低,而傅立叶变换红外光谱 (FTIR) 分析表明红外光谱中没有分子带,这证实了 Cs+ 离子诱导的溅射造成了广泛的表面损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mass spectrometric study of low energy Cs+ ion-induced sputtered fragmentation of PADC polymer

In this study, low-energy cesium (Cs+) ion-induced sputtered fragmentation of poly allyl diglycol carbonate (PADC) was investigated using mass spectrometry. The collision-induced dissociation mechanism revealed emission of various fragments, including monoatomic (H, C1, O1), diatomic (C2), and multiatomic (C3, CO2, C2O2, C3O2) species within the Cs+ ion energy range of 1–5 keV. The anion current of these fragments exhibited a linear increase with rising incident Cs+ ion energy, indicating a corresponding rise in fragment abundance. Analysis of normalized yield indicated that at 1 keV incident energy, the dominant fragment was monoatomic hydrogen (H), followed by diatomic carbon (C2), monoatomic carbon (C1), and monoatomic oxygen (O1). Although C2 remained dominant up to 5 keV, other fragments exhibited varying normalized yields at different ion energy steps. The sputter yield estimation revealed that monoatomic hydrogen (H) and diatomic carbon (C2) exhibited the highest yields, increasing exponentially beyond 3 keV, while multiatomic fragments like C3, CO2, C2O2, and C3O2 displayed the lowest yields. The sputter dissociation mechanism pointed to dehydrogenation, chain scission, and bond breakage as the primary processes during low-energy Cs+ ion impact. Postsputtering Scanning Electron Mircoscope (SEM) micrographs show craters, pits, and micropores on the PADC surface, indicating significant surface degradation. X-ray Diffraction (XRD) spectra exhibited reduced diffraction intensity, while Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated the absence of molecular bands in the IR spectrum, confirming extensive surface damage due to Cs+ ion-induced sputtering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mass Spectrometry
Journal of Mass Spectrometry 化学-光谱学
CiteScore
5.10
自引率
0.00%
发文量
84
审稿时长
1.5 months
期刊介绍: The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions. The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信