根据生物相容性对生物材料进行表征,专用于患者特异性手指植入物。

IF 0.8 4区 医学 Q4 BIOPHYSICS
Adam Byrski, Magdalena Kopernik, Łukasz Major, Katarzyna Kasperkiewicz, Marcin Dyner, Juergen M Lackner, David B Lumenta, Roman Major
{"title":"根据生物相容性对生物材料进行表征,专用于患者特异性手指植入物。","authors":"Adam Byrski, Magdalena Kopernik, Łukasz Major, Katarzyna Kasperkiewicz, Marcin Dyner, Juergen M Lackner, David B Lumenta, Roman Major","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The research was focused on determining basic mechanical properties, surface, and phase structure taking into consideration basic cytotoxicity analysis towards human cells.</p><p><strong>Methods: </strong>Biological tests were performed on human C-12302 fibroblasts cells using 3D-printed Ti6Al4V alloy (Ti64), produced by laser-based powder bed fusion (LB-PBF) and Alumina Toughened Zirconia 20 (ATZ20), produced by lithography-based ceramic manufacturing (LCM). Surface modifications included electropolishing and hydroxyapatite or hydroxyapatite/zinc coating. Structure analysis was carried out using a variety of techniques such as X-Ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM), followed by mechanical properties evaluation using nanoindentation testing.</p><p><strong>Results: </strong>Samples subjected to surface modifications showed diversity among surface and phase structure and mechanical properties. However, the cytotoxicity towards tested cells was not significantly higher than the control. Though, a trend was noted among the materials analysed, indicating that HAp/Zn coating on Ti64 and ATZ20 resulted in the best biological performance increasing cell survivability by more than 10%.</p><p><strong>Conclusions: </strong>Hydroxyapatite coating on Ti64 and ATZ20 resulted in the best biological properties. Tested materials are suitable for in vivo toxicity testin.</p>","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"25 1","pages":"3-17"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of biomaterials with reference to biocompatibility dedicated for patient-specific finger implants.\",\"authors\":\"Adam Byrski, Magdalena Kopernik, Łukasz Major, Katarzyna Kasperkiewicz, Marcin Dyner, Juergen M Lackner, David B Lumenta, Roman Major\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The research was focused on determining basic mechanical properties, surface, and phase structure taking into consideration basic cytotoxicity analysis towards human cells.</p><p><strong>Methods: </strong>Biological tests were performed on human C-12302 fibroblasts cells using 3D-printed Ti6Al4V alloy (Ti64), produced by laser-based powder bed fusion (LB-PBF) and Alumina Toughened Zirconia 20 (ATZ20), produced by lithography-based ceramic manufacturing (LCM). Surface modifications included electropolishing and hydroxyapatite or hydroxyapatite/zinc coating. Structure analysis was carried out using a variety of techniques such as X-Ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM), followed by mechanical properties evaluation using nanoindentation testing.</p><p><strong>Results: </strong>Samples subjected to surface modifications showed diversity among surface and phase structure and mechanical properties. However, the cytotoxicity towards tested cells was not significantly higher than the control. Though, a trend was noted among the materials analysed, indicating that HAp/Zn coating on Ti64 and ATZ20 resulted in the best biological performance increasing cell survivability by more than 10%.</p><p><strong>Conclusions: </strong>Hydroxyapatite coating on Ti64 and ATZ20 resulted in the best biological properties. Tested materials are suitable for in vivo toxicity testin.</p>\",\"PeriodicalId\":6897,\"journal\":{\"name\":\"Acta of bioengineering and biomechanics\",\"volume\":\"25 1\",\"pages\":\"3-17\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta of bioengineering and biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"5","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究重点是确定基本机械性能、表面和相结构,同时考虑对人体细胞的基本细胞毒性分析:使用激光粉末床熔融技术(LB-PBF)生产的三维打印 Ti6Al4V 合金(Ti64)和光刻陶瓷制造技术(LCM)生产的氧化铝增韧氧化锆 20(ATZ20),对人 C-12302 成纤维细胞进行生物测试。表面修饰包括电抛光和羟基磷灰石或羟基磷灰石/锌涂层。使用 X 射线衍射、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和激光共聚焦扫描显微镜(CLSM)等多种技术进行了结构分析,然后使用纳米压痕测试进行了机械性能评估:结果:经过表面改性的样品在表面结构、相结构和机械性能方面表现出多样性。然而,测试细胞的细胞毒性并没有明显高于对照组。尽管如此,在所分析的材料中还是发现了一种趋势,表明在 Ti64 和 ATZ20 上进行 HAp/Zn 涂层可获得最佳生物性能,细胞存活率提高了 10%以上:Ti64 和 ATZ20 上的羟基磷灰石涂层具有最佳的生物特性。测试材料适合用于体内毒性测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of biomaterials with reference to biocompatibility dedicated for patient-specific finger implants.

Purpose: The research was focused on determining basic mechanical properties, surface, and phase structure taking into consideration basic cytotoxicity analysis towards human cells.

Methods: Biological tests were performed on human C-12302 fibroblasts cells using 3D-printed Ti6Al4V alloy (Ti64), produced by laser-based powder bed fusion (LB-PBF) and Alumina Toughened Zirconia 20 (ATZ20), produced by lithography-based ceramic manufacturing (LCM). Surface modifications included electropolishing and hydroxyapatite or hydroxyapatite/zinc coating. Structure analysis was carried out using a variety of techniques such as X-Ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM), followed by mechanical properties evaluation using nanoindentation testing.

Results: Samples subjected to surface modifications showed diversity among surface and phase structure and mechanical properties. However, the cytotoxicity towards tested cells was not significantly higher than the control. Though, a trend was noted among the materials analysed, indicating that HAp/Zn coating on Ti64 and ATZ20 resulted in the best biological performance increasing cell survivability by more than 10%.

Conclusions: Hydroxyapatite coating on Ti64 and ATZ20 resulted in the best biological properties. Tested materials are suitable for in vivo toxicity testin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta of bioengineering and biomechanics
Acta of bioengineering and biomechanics BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
10.00%
发文量
0
期刊介绍: Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background. Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to: Tissue Biomechanics, Orthopedic Biomechanics, Biomaterials, Sport Biomechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信