通过数值模拟对人类行走、跑步和短跑进行空气动力学分析。

IF 0.8 4区 医学 Q4 BIOPHYSICS
Pedro Forte, Nuno Sousa, José Teixeira, Daniel Marinho, António Monteiro, José Bragada, Jorge Morais, Tiago Barbosa
{"title":"通过数值模拟对人类行走、跑步和短跑进行空气动力学分析。","authors":"Pedro Forte, Nuno Sousa, José Teixeira, Daniel Marinho, António Monteiro, José Bragada, Jorge Morais, Tiago Barbosa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The drag in walking, running and sprinting locomotion can be assessed by analytical procedures and experimental techniques. However, assessing the drag variations by the above-mentioned types of locomotion were not found using computational fluid dynamics (CFD). Thus, the aim of this study was two-fold: (1) to assess the aerodynamics of human walking, running and sprinting by CFD technique; 2) compare such aerodynamic characteristics between walking and running. Three 3D models were produced depicting the walking, running and sprinting locomotion techniques, converted to computer aided design models and meshed. The drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity. In conclusion, drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity.</p>","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic analysis of human walking, running and sprinting by numerical simulations.\",\"authors\":\"Pedro Forte, Nuno Sousa, José Teixeira, Daniel Marinho, António Monteiro, José Bragada, Jorge Morais, Tiago Barbosa\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The drag in walking, running and sprinting locomotion can be assessed by analytical procedures and experimental techniques. However, assessing the drag variations by the above-mentioned types of locomotion were not found using computational fluid dynamics (CFD). Thus, the aim of this study was two-fold: (1) to assess the aerodynamics of human walking, running and sprinting by CFD technique; 2) compare such aerodynamic characteristics between walking and running. Three 3D models were produced depicting the walking, running and sprinting locomotion techniques, converted to computer aided design models and meshed. The drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity. In conclusion, drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity.</p>\",\"PeriodicalId\":6897,\"journal\":{\"name\":\"Acta of bioengineering and biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta of bioengineering and biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"5","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

步行、跑步和冲刺运动中的阻力可通过分析程序和实验技术进行评估。然而,使用计算流体动力学(CFD)来评估上述运动类型的阻力变化尚未发现。因此,本研究有两个目的:(1)通过 CFD 技术评估人类行走、跑步和短跑的空气动力学特性;(2)比较行走和跑步的空气动力学特性。研究人员制作了三个三维模型,分别描述了行走、跑步和冲刺运动技术,并将其转换为计算机辅助设计模型和网格。阻力随运动类型而变化。步行的阻力最小,其次是跑步和冲刺。在速度相同的情况下,步行的阻力大于跑步,并且随着速度的增加而增加。总之,阻力随运动类型而变化。步行的阻力最小,其次是跑步,然后是短跑。在相同速度下,步行的阻力大于跑步,并且随速度增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerodynamic analysis of human walking, running and sprinting by numerical simulations.

The drag in walking, running and sprinting locomotion can be assessed by analytical procedures and experimental techniques. However, assessing the drag variations by the above-mentioned types of locomotion were not found using computational fluid dynamics (CFD). Thus, the aim of this study was two-fold: (1) to assess the aerodynamics of human walking, running and sprinting by CFD technique; 2) compare such aerodynamic characteristics between walking and running. Three 3D models were produced depicting the walking, running and sprinting locomotion techniques, converted to computer aided design models and meshed. The drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity. In conclusion, drag varied with locomotion type. Walking had the lowest drag, followed-up by running and then sprinting. At the same velocities, the drag was larger in walking than in running and increased with velocity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta of bioengineering and biomechanics
Acta of bioengineering and biomechanics BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
10.00%
发文量
0
期刊介绍: Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background. Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to: Tissue Biomechanics, Orthopedic Biomechanics, Biomaterials, Sport Biomechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信