线性函数类的多变量通用多项式

A. A. Voronenko
{"title":"线性函数类的多变量通用多项式","authors":"A. A. Voronenko","doi":"10.3103/s027864192304012x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>It was shown earlier that product <span>\\(xy\\)</span> for <span>\\(k=6l\\pm 1\\)</span> is a universalfunction in the class of linear functions of two variables, and there exist no universal polynomials for even <span>\\(k\\)</span> in classes of linear functions of two variables. This work proves that polynomial <span>\\(xy+xz+yz\\)</span> is universal for classes of linear functions of three variables for arbitrary odd <span>\\(k\\)</span> and polynomial <span>\\(xy+zw\\)</span> is universal for classes of linear functions of four variables for arbitrary <span>\\(k\\)</span>.</p>","PeriodicalId":501582,"journal":{"name":"Moscow University Computational Mathematics and Cybernetics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Polynomials of Several Variables for Classes of Linear Functions\",\"authors\":\"A. A. Voronenko\",\"doi\":\"10.3103/s027864192304012x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>It was shown earlier that product <span>\\\\(xy\\\\)</span> for <span>\\\\(k=6l\\\\pm 1\\\\)</span> is a universalfunction in the class of linear functions of two variables, and there exist no universal polynomials for even <span>\\\\(k\\\\)</span> in classes of linear functions of two variables. This work proves that polynomial <span>\\\\(xy+xz+yz\\\\)</span> is universal for classes of linear functions of three variables for arbitrary odd <span>\\\\(k\\\\)</span> and polynomial <span>\\\\(xy+zw\\\\)</span> is universal for classes of linear functions of four variables for arbitrary <span>\\\\(k\\\\)</span>.</p>\",\"PeriodicalId\":501582,\"journal\":{\"name\":\"Moscow University Computational Mathematics and Cybernetics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Computational Mathematics and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s027864192304012x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Computational Mathematics and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s027864192304012x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract It was previously shown that product\(xy\) for \(k=6l\pm 1\) is a universalfunction in the class of linear functions of two variables, and there exist no universal polynomials for even \(k\) in classes of linear functions of two variables.这项工作证明了多项式\(xy+xz+yz\)对于任意奇数\(k\)的三变量线性函数类是通用的,多项式\(xy+zw\)对于任意\(k\)的四变量线性函数类是通用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal Polynomials of Several Variables for Classes of Linear Functions

Abstract

It was shown earlier that product \(xy\) for \(k=6l\pm 1\) is a universalfunction in the class of linear functions of two variables, and there exist no universal polynomials for even \(k\) in classes of linear functions of two variables. This work proves that polynomial \(xy+xz+yz\) is universal for classes of linear functions of three variables for arbitrary odd \(k\) and polynomial \(xy+zw\) is universal for classes of linear functions of four variables for arbitrary \(k\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信