带状态约束和推力的改进型勃拉希斯托克龙问题

{"title":"带状态约束和推力的改进型勃拉希斯托克龙问题","authors":"","doi":"10.3103/s0278641923040167","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>The problem of maximizing the horizontal coordinate of a mass point moving in a vertical plane driven by gravity, viscous drag, curve reaction force, and thrust is considered. It is assumed that inequality-type constraints are imposed on the angle of inclination of the trajectory. The system of equations belongs to a certain type that allows us to reduce the optimal control problem with constraints on the state variable to the optimal control problem with control constraints. The sequence and the number of switchings of the state constraints along the optimal trajectory are determined, and a scheme for optimal control is designed.</p> </span>","PeriodicalId":501582,"journal":{"name":"Moscow University Computational Mathematics and Cybernetics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Brachistochrone Problem with State Constraints and Thrust\",\"authors\":\"\",\"doi\":\"10.3103/s0278641923040167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>The problem of maximizing the horizontal coordinate of a mass point moving in a vertical plane driven by gravity, viscous drag, curve reaction force, and thrust is considered. It is assumed that inequality-type constraints are imposed on the angle of inclination of the trajectory. The system of equations belongs to a certain type that allows us to reduce the optimal control problem with constraints on the state variable to the optimal control problem with control constraints. The sequence and the number of switchings of the state constraints along the optimal trajectory are determined, and a scheme for optimal control is designed.</p> </span>\",\"PeriodicalId\":501582,\"journal\":{\"name\":\"Moscow University Computational Mathematics and Cybernetics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Computational Mathematics and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s0278641923040167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Computational Mathematics and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0278641923040167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文考虑了在重力、粘性阻力、曲线反作用力和推力的作用下,使在垂直面内运动的质点的水平坐标最大化的问题。假定对轨迹的倾斜角施加不等式类型的约束。该方程组属于某种类型,可以将带有状态变量约束的最优控制问题简化为带有控制约束的最优控制问题。确定了最优轨迹上状态约束的切换顺序和次数,并设计了最优控制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Brachistochrone Problem with State Constraints and Thrust

Abstract

The problem of maximizing the horizontal coordinate of a mass point moving in a vertical plane driven by gravity, viscous drag, curve reaction force, and thrust is considered. It is assumed that inequality-type constraints are imposed on the angle of inclination of the trajectory. The system of equations belongs to a certain type that allows us to reduce the optimal control problem with constraints on the state variable to the optimal control problem with control constraints. The sequence and the number of switchings of the state constraints along the optimal trajectory are determined, and a scheme for optimal control is designed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信