基于路径的模糊时空 RDF 数据近似匹配

Lin Zhu, Jiajia Lu, Luyi Bai
{"title":"基于路径的模糊时空 RDF 数据近似匹配","authors":"Lin Zhu, Jiajia Lu, Luyi Bai","doi":"10.1007/s11280-024-01247-6","DOIUrl":null,"url":null,"abstract":"<p>As fuzzy spatiotemporal information continuously increases in RDF database, it is challenging to model and query fuzzy spatiotemporal RDF data efficiently and effectively. However, various researches are studied in temporal RDF database, spatial RDF database, and spatiotemporal RDF database. Querying fuzzy spatiotemporal RDF data has received relatively little attention, especially approximate matching of fuzzy spatiotemporal RDF data. To accomplish this, we first study fuzzy spatiotemporal RDF data graph, spatiotemporal RDF query graph, and path of fuzzy spatiotemporal RDF data graph. Then, we propose a scoring function for approximate evaluation of fuzzy spatiotemporal RDF data graph and spatiotemporal RDF query graph. After dividing the fuzzy spatiotemporal RDF data graphs into five categories based on their structure, we propose the decomposition algorithm, matching algorithm, and combination algorithm for approximate matching of fuzzy spatiotemporal RDF data. Our approach adopts path-based matching so that it is easy to discover the relations between two vertices in fuzzy spatiotemporal RDF data graph. Finally, the experimental results demonstrate the performance advantages of our approach.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path-based approximate matching of fuzzy spatiotemporal RDF data\",\"authors\":\"Lin Zhu, Jiajia Lu, Luyi Bai\",\"doi\":\"10.1007/s11280-024-01247-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As fuzzy spatiotemporal information continuously increases in RDF database, it is challenging to model and query fuzzy spatiotemporal RDF data efficiently and effectively. However, various researches are studied in temporal RDF database, spatial RDF database, and spatiotemporal RDF database. Querying fuzzy spatiotemporal RDF data has received relatively little attention, especially approximate matching of fuzzy spatiotemporal RDF data. To accomplish this, we first study fuzzy spatiotemporal RDF data graph, spatiotemporal RDF query graph, and path of fuzzy spatiotemporal RDF data graph. Then, we propose a scoring function for approximate evaluation of fuzzy spatiotemporal RDF data graph and spatiotemporal RDF query graph. After dividing the fuzzy spatiotemporal RDF data graphs into five categories based on their structure, we propose the decomposition algorithm, matching algorithm, and combination algorithm for approximate matching of fuzzy spatiotemporal RDF data. Our approach adopts path-based matching so that it is easy to discover the relations between two vertices in fuzzy spatiotemporal RDF data graph. Finally, the experimental results demonstrate the performance advantages of our approach.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-024-01247-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01247-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着 RDF 数据库中模糊时空信息的不断增加,如何有效地对模糊时空 RDF 数据进行建模和查询是一项挑战。然而,人们对时间 RDF 数据库、空间 RDF 数据库和时空 RDF 数据库进行了各种研究。模糊时空 RDF 数据的查询,尤其是模糊时空 RDF 数据的近似匹配,相对来说关注较少。为此,我们首先研究了模糊时空 RDF 数据图、时空 RDF 查询图和模糊时空 RDF 数据图路径。然后,我们提出了用于近似评估模糊时空 RDF 数据图和时空 RDF 查询图的评分函数。根据模糊时空 RDF 数据图的结构将其分为五类后,我们提出了模糊时空 RDF 数据近似匹配的分解算法、匹配算法和组合算法。我们的方法采用基于路径的匹配,因此很容易发现模糊时空 RDF 数据图中两个顶点之间的关系。最后,实验结果证明了我们的方法的性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Path-based approximate matching of fuzzy spatiotemporal RDF data

Path-based approximate matching of fuzzy spatiotemporal RDF data

As fuzzy spatiotemporal information continuously increases in RDF database, it is challenging to model and query fuzzy spatiotemporal RDF data efficiently and effectively. However, various researches are studied in temporal RDF database, spatial RDF database, and spatiotemporal RDF database. Querying fuzzy spatiotemporal RDF data has received relatively little attention, especially approximate matching of fuzzy spatiotemporal RDF data. To accomplish this, we first study fuzzy spatiotemporal RDF data graph, spatiotemporal RDF query graph, and path of fuzzy spatiotemporal RDF data graph. Then, we propose a scoring function for approximate evaluation of fuzzy spatiotemporal RDF data graph and spatiotemporal RDF query graph. After dividing the fuzzy spatiotemporal RDF data graphs into five categories based on their structure, we propose the decomposition algorithm, matching algorithm, and combination algorithm for approximate matching of fuzzy spatiotemporal RDF data. Our approach adopts path-based matching so that it is easy to discover the relations between two vertices in fuzzy spatiotemporal RDF data graph. Finally, the experimental results demonstrate the performance advantages of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信