{"title":"旋转的临界曲线","authors":"","doi":"10.1016/j.indag.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>In rotations with a binary symbolic dynamics, a critical curve is the locus of parameters for which the boundaries of the partition that defines the symbolic dynamics are connected via a prescribed number of iterations and symbolic itinerary. We study the arithmetical and geometrical properties of these curves in parameter space.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 989-1008"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357724000089/pdfft?md5=2f9d5a6610f18fbac9a8c979bf5335b4&pid=1-s2.0-S0019357724000089-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Critical curves of rotations\",\"authors\":\"\",\"doi\":\"10.1016/j.indag.2024.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In rotations with a binary symbolic dynamics, a critical curve is the locus of parameters for which the boundaries of the partition that defines the symbolic dynamics are connected via a prescribed number of iterations and symbolic itinerary. We study the arithmetical and geometrical properties of these curves in parameter space.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 5\",\"pages\":\"Pages 989-1008\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000089/pdfft?md5=2f9d5a6610f18fbac9a8c979bf5335b4&pid=1-s2.0-S0019357724000089-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000089\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In rotations with a binary symbolic dynamics, a critical curve is the locus of parameters for which the boundaries of the partition that defines the symbolic dynamics are connected via a prescribed number of iterations and symbolic itinerary. We study the arithmetical and geometrical properties of these curves in parameter space.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.