有序逆半群前缀展开的有序性

Pub Date : 2024-02-02 DOI:10.1007/s00233-024-10409-x
G. H. Esslamzadeh, M. A. Faraji, B. Tabatabaie Shourijeh
{"title":"有序逆半群前缀展开的有序性","authors":"G. H. Esslamzadeh, M. A. Faraji, B. Tabatabaie Shourijeh","doi":"10.1007/s00233-024-10409-x","DOIUrl":null,"url":null,"abstract":"<p>We answer two orderability questions about the prefix expansion semigroup <b>Pr</b>(<i>G</i>) of an inverse semigroup <i>G</i>. We show that if <i>G</i> is a left ordered inverse semigroup, then <b>Pr</b>(<i>G</i>) is a left ordered inverse semigroup if and only if it is an ordered inverse semigroup, if and only if <i>G</i> is a semilattice. We also prove that when <i>G</i> and <b>Pr</b>(<i>G</i>) are left ordered, <b>Pr</b>(<i>G</i>) is proper if and only if <i>G</i> is proper. Positivity of the canonical map from <i>G</i> into <b>Pr</b>(<i>G</i>) is also proved. At the end we correct an existing result in the literature by showing that for two arbitrary inverse semigroups <i>G</i> and <i>H</i> the map <b>Pr</b>(<span>\\(\\pi \\)</span>): <b>Pr</b>(<i>G</i>) <span>\\(\\longrightarrow \\)</span> <b>Pr</b>(<i>H</i>) induced by the partial homomorphism <span>\\(\\pi \\)</span>: <i>G</i> <span>\\(\\longrightarrow \\)</span> <i>H</i> is not necessarily a homomorphism, but is a partial homomorphism.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orderability of the prefix expansion of an ordered inverse semigroup\",\"authors\":\"G. H. Esslamzadeh, M. A. Faraji, B. Tabatabaie Shourijeh\",\"doi\":\"10.1007/s00233-024-10409-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We answer two orderability questions about the prefix expansion semigroup <b>Pr</b>(<i>G</i>) of an inverse semigroup <i>G</i>. We show that if <i>G</i> is a left ordered inverse semigroup, then <b>Pr</b>(<i>G</i>) is a left ordered inverse semigroup if and only if it is an ordered inverse semigroup, if and only if <i>G</i> is a semilattice. We also prove that when <i>G</i> and <b>Pr</b>(<i>G</i>) are left ordered, <b>Pr</b>(<i>G</i>) is proper if and only if <i>G</i> is proper. Positivity of the canonical map from <i>G</i> into <b>Pr</b>(<i>G</i>) is also proved. At the end we correct an existing result in the literature by showing that for two arbitrary inverse semigroups <i>G</i> and <i>H</i> the map <b>Pr</b>(<span>\\\\(\\\\pi \\\\)</span>): <b>Pr</b>(<i>G</i>) <span>\\\\(\\\\longrightarrow \\\\)</span> <b>Pr</b>(<i>H</i>) induced by the partial homomorphism <span>\\\\(\\\\pi \\\\)</span>: <i>G</i> <span>\\\\(\\\\longrightarrow \\\\)</span> <i>H</i> is not necessarily a homomorphism, but is a partial homomorphism.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10409-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10409-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们回答了关于逆半群 G 的前缀展开半群 Pr(G) 的两个有序性问题。我们证明,如果 G 是一个左有序逆半群,那么只有当且仅当 G 是一个半网格时,Pr(G) 才是一个左有序逆半群。我们还证明,当 G 和 Pr(G) 都是左有序时,当且仅当 G 是有序的,Pr(G) 才是有序的。我们还证明了从 G 到 Pr(G)的典型映射的实在性。最后,我们通过证明对于两个任意反半群 G 和 H,映射 Pr(\(\pi\)):Pr(G) \(\longrightarrow \) Pr(H) 由部分同态性 \(\pi \) 引起:H 不一定是同态,但一定是部分同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Orderability of the prefix expansion of an ordered inverse semigroup

We answer two orderability questions about the prefix expansion semigroup Pr(G) of an inverse semigroup G. We show that if G is a left ordered inverse semigroup, then Pr(G) is a left ordered inverse semigroup if and only if it is an ordered inverse semigroup, if and only if G is a semilattice. We also prove that when G and Pr(G) are left ordered, Pr(G) is proper if and only if G is proper. Positivity of the canonical map from G into Pr(G) is also proved. At the end we correct an existing result in the literature by showing that for two arbitrary inverse semigroups G and H the map Pr(\(\pi \)): Pr(G) \(\longrightarrow \) Pr(H) induced by the partial homomorphism \(\pi \): G \(\longrightarrow \) H is not necessarily a homomorphism, but is a partial homomorphism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信