G. O. Zasypalov, V. A. Klimovsky, E. S. Abramov, E. E. Brindukova, V. D. Stytsenko, A. P. Glotov
{"title":"木质纤维素生物油的加氢处理(综述)","authors":"G. O. Zasypalov, V. A. Klimovsky, E. S. Abramov, E. E. Brindukova, V. D. Stytsenko, A. P. Glotov","doi":"10.1134/S0965544123090013","DOIUrl":null,"url":null,"abstract":"<p>This review discusses recent advances in catalytic hydrodeoxygenation of lignocellulosic biomass. Lignocellulosic biomass is the most promising plant-based raw material for the production of liquid engine fuels or individual petrochemical monomers. Among the several existing techniques for biomass processing, pyrolysis offers superior efficiency. Given that the bio-oil produced by biomass pyrolysis has unsatisfactory performance characteristics caused by the presence of oxygenates, this bio-oil cannot be used directly as a fuel. Hydrodeoxygenation using selective catalysts is able to reduce the oxygen content in bio-oil and to improve its performance characteristics. To this end, bifunctional catalysts that contain active metal sites on an acid support hold promise. Noble metals (e.g., Pt, Pd, and Ru) and/or transition metals (e.g., Ni, Co, and Mo), as well as sulfides and phosphides of transition metals, can be used as an active catalytic phase. Metal oxides (e.g., ZrO<sub>2</sub>, CeO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub>), carbon, zeolites (e.g., ZSM-5, Y, Beta, and SAPO-11), and mesoporous silica-based materials (e.g., SBA-15 and MCM-41) have been most often used as supports in hydrodeoxygenation catalysts. However, the implementation and upscaling of the hydrodeoxygenation of biomass pyrolytic bio-oil is limited because of the rapid deactivation of the catalyst in the presence of water, due to sintering and leaching the active phase with acidic components of bio-oil. Therefore, the development of catalysts that would provide high activity and stability under bio-oil hydrodeoxygenation conditions has become one of the most pressing issues for the petrochemical industry.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"63 10","pages":"1143 - 1169"},"PeriodicalIF":1.3000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrotreating of Lignocellulosic Bio-Oil (A Review)\",\"authors\":\"G. O. Zasypalov, V. A. Klimovsky, E. S. Abramov, E. E. Brindukova, V. D. Stytsenko, A. P. Glotov\",\"doi\":\"10.1134/S0965544123090013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review discusses recent advances in catalytic hydrodeoxygenation of lignocellulosic biomass. Lignocellulosic biomass is the most promising plant-based raw material for the production of liquid engine fuels or individual petrochemical monomers. Among the several existing techniques for biomass processing, pyrolysis offers superior efficiency. Given that the bio-oil produced by biomass pyrolysis has unsatisfactory performance characteristics caused by the presence of oxygenates, this bio-oil cannot be used directly as a fuel. Hydrodeoxygenation using selective catalysts is able to reduce the oxygen content in bio-oil and to improve its performance characteristics. To this end, bifunctional catalysts that contain active metal sites on an acid support hold promise. Noble metals (e.g., Pt, Pd, and Ru) and/or transition metals (e.g., Ni, Co, and Mo), as well as sulfides and phosphides of transition metals, can be used as an active catalytic phase. Metal oxides (e.g., ZrO<sub>2</sub>, CeO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub>), carbon, zeolites (e.g., ZSM-5, Y, Beta, and SAPO-11), and mesoporous silica-based materials (e.g., SBA-15 and MCM-41) have been most often used as supports in hydrodeoxygenation catalysts. However, the implementation and upscaling of the hydrodeoxygenation of biomass pyrolytic bio-oil is limited because of the rapid deactivation of the catalyst in the presence of water, due to sintering and leaching the active phase with acidic components of bio-oil. Therefore, the development of catalysts that would provide high activity and stability under bio-oil hydrodeoxygenation conditions has become one of the most pressing issues for the petrochemical industry.</p>\",\"PeriodicalId\":725,\"journal\":{\"name\":\"Petroleum Chemistry\",\"volume\":\"63 10\",\"pages\":\"1143 - 1169\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965544123090013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544123090013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Hydrotreating of Lignocellulosic Bio-Oil (A Review)
This review discusses recent advances in catalytic hydrodeoxygenation of lignocellulosic biomass. Lignocellulosic biomass is the most promising plant-based raw material for the production of liquid engine fuels or individual petrochemical monomers. Among the several existing techniques for biomass processing, pyrolysis offers superior efficiency. Given that the bio-oil produced by biomass pyrolysis has unsatisfactory performance characteristics caused by the presence of oxygenates, this bio-oil cannot be used directly as a fuel. Hydrodeoxygenation using selective catalysts is able to reduce the oxygen content in bio-oil and to improve its performance characteristics. To this end, bifunctional catalysts that contain active metal sites on an acid support hold promise. Noble metals (e.g., Pt, Pd, and Ru) and/or transition metals (e.g., Ni, Co, and Mo), as well as sulfides and phosphides of transition metals, can be used as an active catalytic phase. Metal oxides (e.g., ZrO2, CeO2, Al2O3, and TiO2), carbon, zeolites (e.g., ZSM-5, Y, Beta, and SAPO-11), and mesoporous silica-based materials (e.g., SBA-15 and MCM-41) have been most often used as supports in hydrodeoxygenation catalysts. However, the implementation and upscaling of the hydrodeoxygenation of biomass pyrolytic bio-oil is limited because of the rapid deactivation of the catalyst in the presence of water, due to sintering and leaching the active phase with acidic components of bio-oil. Therefore, the development of catalysts that would provide high activity and stability under bio-oil hydrodeoxygenation conditions has become one of the most pressing issues for the petrochemical industry.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.