求助PDF
{"title":"与最大函数方程有关的任意群上的广义文采函数方程","authors":"Muhammad Sarfraz, Zhou Jiang, Qi Liu, Yongjin Li","doi":"10.1007/s00010-023-01031-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this research paper, we investigate a generalization of Vincze’s type functional equations involving several (up to four) unknown functions in connection with the maximum functional equation as </p><div><div><span>$$\\begin{aligned} \\max \\{\\psi (xy), \\psi (xy^{-1})\\}&= \\psi (x)\\eta (y)+\\psi (y), \\\\ \\max \\{\\psi (xy), \\psi (xy^{-1})\\}&= \\psi (x)\\eta (y)+\\chi (y), \\\\ \\max \\{\\psi (xy), \\psi (xy^{-1})\\}&= \\phi (x)\\eta (y), \\\\ \\max \\{\\psi (xy), \\psi (xy^{-1})\\}&= \\phi (x)\\eta (y)+\\chi (y), \\end{aligned}$$</span></div></div><p>where <i>G</i> is an arbitrary group, <span>\\(x, y \\in G\\)</span>, and <span>\\(\\psi , \\eta , \\chi , \\phi :G \\rightarrow \\mathbb {R}\\)</span> are unknown functions.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 1","pages":"173 - 188"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Vincze’s functional equations on any group in connection with the maximum functional equation\",\"authors\":\"Muhammad Sarfraz, Zhou Jiang, Qi Liu, Yongjin Li\",\"doi\":\"10.1007/s00010-023-01031-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research paper, we investigate a generalization of Vincze’s type functional equations involving several (up to four) unknown functions in connection with the maximum functional equation as </p><div><div><span>$$\\\\begin{aligned} \\\\max \\\\{\\\\psi (xy), \\\\psi (xy^{-1})\\\\}&= \\\\psi (x)\\\\eta (y)+\\\\psi (y), \\\\\\\\ \\\\max \\\\{\\\\psi (xy), \\\\psi (xy^{-1})\\\\}&= \\\\psi (x)\\\\eta (y)+\\\\chi (y), \\\\\\\\ \\\\max \\\\{\\\\psi (xy), \\\\psi (xy^{-1})\\\\}&= \\\\phi (x)\\\\eta (y), \\\\\\\\ \\\\max \\\\{\\\\psi (xy), \\\\psi (xy^{-1})\\\\}&= \\\\phi (x)\\\\eta (y)+\\\\chi (y), \\\\end{aligned}$$</span></div></div><p>where <i>G</i> is an arbitrary group, <span>\\\\(x, y \\\\in G\\\\)</span>, and <span>\\\\(\\\\psi , \\\\eta , \\\\chi , \\\\phi :G \\\\rightarrow \\\\mathbb {R}\\\\)</span> are unknown functions.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"98 1\",\"pages\":\"173 - 188\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-023-01031-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-023-01031-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
摘要 在这篇研究论文中,我们研究了涉及多个(最多四个)未知函数的文采式函数方程的广义化,其最大函数方程为 $$\begin{aligned}\max \{\psi (xy), \psi (xy^{-1})\}&= \psi (x)\eta (y)+\psi (y), \max \{\psi (xy), \psi (xy^{-1})\}&= \psi (x)\eta (y)+\chi (y), \max \{\psi (xy), \psi (xy^{-1})\}&;= \phi (x)\eta (y), \max \{\psi(xy), \psi(xy^{-1})&=\phi(x)\eta(y)+\chi(y), \end{aligned}$$其中 G 是一个任意群,\(x, y 在 G 中), 和 \(\psi , \eta , \chi , \phi:G \rightarrow \mathbb {R}\) 都是未知函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。