{"title":"一类非凸不等式约束问题的 Frank-Wolfe 型方法","authors":"","doi":"10.1007/s10107-023-02055-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The Frank–Wolfe (FW) method, which implements efficient linear oracles that minimize linear approximations of the objective function over a <em>fixed</em> compact convex set, has recently received much attention in the optimization and machine learning literature. In this paper, we propose a new FW-type method for minimizing a smooth function over a compact set defined as the level set of a single <em>difference-of-convex</em> function, based on new <em>generalized</em> linear-optimization oracles (LO). We show that these LOs can be computed efficiently with <em>closed-form solutions</em> in some important optimization models that arise in compressed sensing and machine learning. In addition, under a mild strict feasibility condition, we establish the subsequential convergence of our nonconvex FW-type method. Since the feasible region of our generalized LO typically changes from iteration to iteration, our convergence analysis is <em>completely different</em> from those existing works in the literature on FW-type methods that deal with <em>fixed</em> feasible regions among subproblems. Finally, motivated by the away steps for accelerating FW-type methods for convex problems, we further design an <em>away-step oracle</em> to supplement our nonconvex FW-type method, and establish subsequential convergence of this variant. Numerical results on the matrix completion problem with standard datasets are presented to demonstrate the efficiency of the proposed FW-type method and its away-step variant. </p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"10 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frank–Wolfe-type methods for a class of nonconvex inequality-constrained problems\",\"authors\":\"\",\"doi\":\"10.1007/s10107-023-02055-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The Frank–Wolfe (FW) method, which implements efficient linear oracles that minimize linear approximations of the objective function over a <em>fixed</em> compact convex set, has recently received much attention in the optimization and machine learning literature. In this paper, we propose a new FW-type method for minimizing a smooth function over a compact set defined as the level set of a single <em>difference-of-convex</em> function, based on new <em>generalized</em> linear-optimization oracles (LO). We show that these LOs can be computed efficiently with <em>closed-form solutions</em> in some important optimization models that arise in compressed sensing and machine learning. In addition, under a mild strict feasibility condition, we establish the subsequential convergence of our nonconvex FW-type method. Since the feasible region of our generalized LO typically changes from iteration to iteration, our convergence analysis is <em>completely different</em> from those existing works in the literature on FW-type methods that deal with <em>fixed</em> feasible regions among subproblems. Finally, motivated by the away steps for accelerating FW-type methods for convex problems, we further design an <em>away-step oracle</em> to supplement our nonconvex FW-type method, and establish subsequential convergence of this variant. Numerical results on the matrix completion problem with standard datasets are presented to demonstrate the efficiency of the proposed FW-type method and its away-step variant. </p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-023-02055-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-023-02055-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Frank–Wolfe-type methods for a class of nonconvex inequality-constrained problems
Abstract
The Frank–Wolfe (FW) method, which implements efficient linear oracles that minimize linear approximations of the objective function over a fixed compact convex set, has recently received much attention in the optimization and machine learning literature. In this paper, we propose a new FW-type method for minimizing a smooth function over a compact set defined as the level set of a single difference-of-convex function, based on new generalized linear-optimization oracles (LO). We show that these LOs can be computed efficiently with closed-form solutions in some important optimization models that arise in compressed sensing and machine learning. In addition, under a mild strict feasibility condition, we establish the subsequential convergence of our nonconvex FW-type method. Since the feasible region of our generalized LO typically changes from iteration to iteration, our convergence analysis is completely different from those existing works in the literature on FW-type methods that deal with fixed feasible regions among subproblems. Finally, motivated by the away steps for accelerating FW-type methods for convex problems, we further design an away-step oracle to supplement our nonconvex FW-type method, and establish subsequential convergence of this variant. Numerical results on the matrix completion problem with standard datasets are presented to demonstrate the efficiency of the proposed FW-type method and its away-step variant.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.