光谱半径相等的无限树族

Francesco Belardo, Maurizio Brunetti
{"title":"光谱半径相等的无限树族","authors":"Francesco Belardo,&nbsp;Maurizio Brunetti","doi":"10.1016/j.exco.2024.100138","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we show that for each positive integer <span><math><mrow><mi>a</mi><mo>⩾</mo><mn>2</mn></mrow></math></span> there exist infinitely many trees whose spectral radius is equal to <span><math><msqrt><mrow><mn>2</mn><mi>a</mi></mrow></msqrt></math></span>. Such trees are obtained by replacing the central edge of the double star <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mn>2</mn><mi>a</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> with suitable bidegreed caterpillars.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100138"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000041/pdfft?md5=163e05dcfa0673ec0b2a9629bf2ab099&pid=1-s2.0-S2666657X24000041-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Infinite families of trees with equal spectral radius\",\"authors\":\"Francesco Belardo,&nbsp;Maurizio Brunetti\",\"doi\":\"10.1016/j.exco.2024.100138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we show that for each positive integer <span><math><mrow><mi>a</mi><mo>⩾</mo><mn>2</mn></mrow></math></span> there exist infinitely many trees whose spectral radius is equal to <span><math><msqrt><mrow><mn>2</mn><mi>a</mi></mrow></msqrt></math></span>. Such trees are obtained by replacing the central edge of the double star <span><math><mrow><mi>S</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mn>2</mn><mi>a</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> with suitable bidegreed caterpillars.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"5 \",\"pages\":\"Article 100138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000041/pdfft?md5=163e05dcfa0673ec0b2a9629bf2ab099&pid=1-s2.0-S2666657X24000041-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本注释中,我们证明了对于每个正整数 a⩾2,存在无限多棵光谱半径等于 2a 的树。将双星 S(a,2a-2) 的中心边替换成合适的双叉毛毛虫,就可以得到这样的树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite families of trees with equal spectral radius

In this note we show that for each positive integer a2 there exist infinitely many trees whose spectral radius is equal to 2a. Such trees are obtained by replacing the central edge of the double star S(a,2a2) with suitable bidegreed caterpillars.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信