Mehdi Honarmand , Hadi Shahriari , Mahdieh Hosseinjani Zadeh , Ali Ghorbani
{"title":"利用 GeoEye-1 和 Landsat 8 OLI 数据增强非硫化锌矿床勘探中的含锌锭岩","authors":"Mehdi Honarmand , Hadi Shahriari , Mahdieh Hosseinjani Zadeh , Ali Ghorbani","doi":"10.1016/j.ejrs.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to map the non-sulphide Zinc (Zn)-bearing gossans at the Gujer Zn deposit area, Central Iran, using Landsat 8 Operational Land Imager (OLI) and GeoEye-1 satellites. The colour composites, Principal Component Analysis (PCA), and Support Vector Machine (SVM) were adopted for image analysis. Zn-bearing gossans contain Fe-oxyhydroxide minerals displaying spectral characteristics in visible and infrared (IR) wavelengths. The application of colour composites using GeoEye-1 images resulted in the delineation of gossans (real target) and ferruginous sandstones (false targets) having the same colour tone in the study area. IR spectroscopy of ore samples showed that hemimorphite exhibits low absorption in shortwave infrared (SWIR) wavelengths. Consequently, the Crosta-PC analysis was conducted using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI to enhance only ore gossans. Five target zones were specified using the Crosta technique. The SVM method was performed to increase the accuracy of image analysis using the Radial Basis Function (RBF) kernel. The SVM-RBF method accomplished enhancing ore gossans by defining a new target zone. According to the results, the application of the Crosta technique using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI can specify ore gossans and eliminate the interfering effect of ferruginous sandstones in similar geological settings. The SVM-RBF can improve the results of image processing using PC entry of Landsat OLI bands. GeoEye-1 images are useful for the initial assessment of geological units in the region and for delineating the accurate boundary of ore gossans derived from Landsat 8 OLI data.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000036/pdfft?md5=3aaed19d465a1b8fca2a73573f7389be&pid=1-s2.0-S1110982324000036-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing Zn-bearing gossans from GeoEye-1 and Landsat 8 OLI data for non-sulphide Zn deposit exploration\",\"authors\":\"Mehdi Honarmand , Hadi Shahriari , Mahdieh Hosseinjani Zadeh , Ali Ghorbani\",\"doi\":\"10.1016/j.ejrs.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to map the non-sulphide Zinc (Zn)-bearing gossans at the Gujer Zn deposit area, Central Iran, using Landsat 8 Operational Land Imager (OLI) and GeoEye-1 satellites. The colour composites, Principal Component Analysis (PCA), and Support Vector Machine (SVM) were adopted for image analysis. Zn-bearing gossans contain Fe-oxyhydroxide minerals displaying spectral characteristics in visible and infrared (IR) wavelengths. The application of colour composites using GeoEye-1 images resulted in the delineation of gossans (real target) and ferruginous sandstones (false targets) having the same colour tone in the study area. IR spectroscopy of ore samples showed that hemimorphite exhibits low absorption in shortwave infrared (SWIR) wavelengths. Consequently, the Crosta-PC analysis was conducted using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI to enhance only ore gossans. Five target zones were specified using the Crosta technique. The SVM method was performed to increase the accuracy of image analysis using the Radial Basis Function (RBF) kernel. The SVM-RBF method accomplished enhancing ore gossans by defining a new target zone. According to the results, the application of the Crosta technique using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI can specify ore gossans and eliminate the interfering effect of ferruginous sandstones in similar geological settings. The SVM-RBF can improve the results of image processing using PC entry of Landsat OLI bands. GeoEye-1 images are useful for the initial assessment of geological units in the region and for delineating the accurate boundary of ore gossans derived from Landsat 8 OLI data.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000036/pdfft?md5=3aaed19d465a1b8fca2a73573f7389be&pid=1-s2.0-S1110982324000036-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982324000036\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000036","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在利用大地遥感卫星 8(Landsat 8 Operational Land Imager,OLI)和 GeoEye-1 卫星绘制伊朗中部古杰尔锌矿床区的非硫化物含锌(Zn)矿床。采用彩色合成、主成分分析(PCA)和支持向量机(SVM)进行图像分析。含锌格桑含有铁氧氢氧化物矿物,在可见光和红外线(IR)波段显示出光谱特征。利用 GeoEye-1 图像进行色彩合成后,在研究区域划分出了具有相同色调的格桑(真实目标)和铁锈砂岩(虚假目标)。矿石样本的红外光谱分析显示,半透明岩在短波红外(SWIR)波段的吸收率较低。因此,利用大地遥感卫星 OLI 的波段 4、5、SWIR-1 和 SWIR-2 进行了 Crosta-PC 分析,只增强了矿斑。使用 Crosta 技术确定了五个目标区。使用径向基函数 (RBF) 内核,采用 SVM 方法提高图像分析的准确性。SVM-RBF 方法通过定义新的目标区来增强矿斑。研究结果表明,利用 Landsat OLI 的波段 4、5、SWIR-1 和 SWIR-2 应用 Crosta 技术可以确定矿斑,并消除类似地质环境中铁锈砂岩的干扰效应。SVM-RBF 可以改善使用 PC 输入 Landsat OLI 波段的图像处理结果。GeoEye-1 图像有助于对该地区的地质单元进行初步评估,也有助于根据 Landsat 8 OLI 数据准确划定矿斑的边界。
Enhancing Zn-bearing gossans from GeoEye-1 and Landsat 8 OLI data for non-sulphide Zn deposit exploration
This study aims to map the non-sulphide Zinc (Zn)-bearing gossans at the Gujer Zn deposit area, Central Iran, using Landsat 8 Operational Land Imager (OLI) and GeoEye-1 satellites. The colour composites, Principal Component Analysis (PCA), and Support Vector Machine (SVM) were adopted for image analysis. Zn-bearing gossans contain Fe-oxyhydroxide minerals displaying spectral characteristics in visible and infrared (IR) wavelengths. The application of colour composites using GeoEye-1 images resulted in the delineation of gossans (real target) and ferruginous sandstones (false targets) having the same colour tone in the study area. IR spectroscopy of ore samples showed that hemimorphite exhibits low absorption in shortwave infrared (SWIR) wavelengths. Consequently, the Crosta-PC analysis was conducted using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI to enhance only ore gossans. Five target zones were specified using the Crosta technique. The SVM method was performed to increase the accuracy of image analysis using the Radial Basis Function (RBF) kernel. The SVM-RBF method accomplished enhancing ore gossans by defining a new target zone. According to the results, the application of the Crosta technique using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI can specify ore gossans and eliminate the interfering effect of ferruginous sandstones in similar geological settings. The SVM-RBF can improve the results of image processing using PC entry of Landsat OLI bands. GeoEye-1 images are useful for the initial assessment of geological units in the region and for delineating the accurate boundary of ore gossans derived from Landsat 8 OLI data.