Daniel Paul , Maranya Makuru Mayengo , Salamida Daudi
{"title":"甘蓝生物量中木虱侵染动态的参数估计、全局敏感性分析和模型拟合","authors":"Daniel Paul , Maranya Makuru Mayengo , Salamida Daudi","doi":"10.1016/j.csfx.2024.100105","DOIUrl":null,"url":null,"abstract":"<div><p><em>Plutella xylostella</em>, commonly called Diamondback moth (DBM), a highly destructive and rapidly spreading agricultural pest originally from Europe. This pest poses a significant threat to global food security, with estimates suggesting that periodic outbreaks of Diamondback moth lead to annual crop losses of up to $US <span><math><mn>4</mn><mo>−</mo><mn>5</mn></math></span> billion worldwide. Given the potential for such substantial losses, it is crucial to employ various methods and techniques to understand the factors affecting the interaction between Diamondback moths and cabbage plants, which, in turn, impact cabbage biomass. In this paper, we propose a deterministic ecological model to capture the dynamics of <em>Plutella xylostella</em> infestations in cabbage biomass. The model is designed based on the life cycle stages of the pest, aiming at targeting the specific stage effectively. The synthetic data is generated using Least Square Algorithm through addition of Gaussian noise into numerically obtained values from existing literature to simulate real-world data. Global sensitivity analysis was done through Latin Hypercube sampling, highlights the significance of parameters such as <span><math><mi>ψ</mi><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> and <em>δ</em> positively influence the growth of the diamondback moth in a cabbage biomass. In light of these findings, the study proposes that control strategies should be specifically directed towards these sensitive parameters. By doing so, we mitigate the pest population and enhance cabbage production.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"12 ","pages":"Article 100105"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054424000022/pdfft?md5=47b89b1fcbcafa81de662e752f02f6e5&pid=1-s2.0-S2590054424000022-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Parameters estimation, global sensitivity analysis and model fitting for the dynamics of Plutella xylostella infestations in a cabbage biomass\",\"authors\":\"Daniel Paul , Maranya Makuru Mayengo , Salamida Daudi\",\"doi\":\"10.1016/j.csfx.2024.100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Plutella xylostella</em>, commonly called Diamondback moth (DBM), a highly destructive and rapidly spreading agricultural pest originally from Europe. This pest poses a significant threat to global food security, with estimates suggesting that periodic outbreaks of Diamondback moth lead to annual crop losses of up to $US <span><math><mn>4</mn><mo>−</mo><mn>5</mn></math></span> billion worldwide. Given the potential for such substantial losses, it is crucial to employ various methods and techniques to understand the factors affecting the interaction between Diamondback moths and cabbage plants, which, in turn, impact cabbage biomass. In this paper, we propose a deterministic ecological model to capture the dynamics of <em>Plutella xylostella</em> infestations in cabbage biomass. The model is designed based on the life cycle stages of the pest, aiming at targeting the specific stage effectively. The synthetic data is generated using Least Square Algorithm through addition of Gaussian noise into numerically obtained values from existing literature to simulate real-world data. Global sensitivity analysis was done through Latin Hypercube sampling, highlights the significance of parameters such as <span><math><mi>ψ</mi><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> and <em>δ</em> positively influence the growth of the diamondback moth in a cabbage biomass. In light of these findings, the study proposes that control strategies should be specifically directed towards these sensitive parameters. By doing so, we mitigate the pest population and enhance cabbage production.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"12 \",\"pages\":\"Article 100105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590054424000022/pdfft?md5=47b89b1fcbcafa81de662e752f02f6e5&pid=1-s2.0-S2590054424000022-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054424000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054424000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Parameters estimation, global sensitivity analysis and model fitting for the dynamics of Plutella xylostella infestations in a cabbage biomass
Plutella xylostella, commonly called Diamondback moth (DBM), a highly destructive and rapidly spreading agricultural pest originally from Europe. This pest poses a significant threat to global food security, with estimates suggesting that periodic outbreaks of Diamondback moth lead to annual crop losses of up to $US billion worldwide. Given the potential for such substantial losses, it is crucial to employ various methods and techniques to understand the factors affecting the interaction between Diamondback moths and cabbage plants, which, in turn, impact cabbage biomass. In this paper, we propose a deterministic ecological model to capture the dynamics of Plutella xylostella infestations in cabbage biomass. The model is designed based on the life cycle stages of the pest, aiming at targeting the specific stage effectively. The synthetic data is generated using Least Square Algorithm through addition of Gaussian noise into numerically obtained values from existing literature to simulate real-world data. Global sensitivity analysis was done through Latin Hypercube sampling, highlights the significance of parameters such as and δ positively influence the growth of the diamondback moth in a cabbage biomass. In light of these findings, the study proposes that control strategies should be specifically directed towards these sensitive parameters. By doing so, we mitigate the pest population and enhance cabbage production.