以需求为导向的机床优化:批量生产中安全探索的闭环方法

Alperen Can , Ali Khaled El-Rahhal , Hendrik Schulz , Gregor Thiele , Jörg Krüger
{"title":"以需求为导向的机床优化:批量生产中安全探索的闭环方法","authors":"Alperen Can ,&nbsp;Ali Khaled El-Rahhal ,&nbsp;Hendrik Schulz ,&nbsp;Gregor Thiele ,&nbsp;Jörg Krüger","doi":"10.1016/j.procir.2023.09.243","DOIUrl":null,"url":null,"abstract":"<div><p>The resource- and energy-efficient operation of machine tools promises significant economic and ecological benefits. However, in the context of series production, optimization of the operating conditions can cause far-reaching consequences for the entire production chain. This paper presents a method for the safe exploration and optimization of new operating parameters on machine tools while ensuring process safety at all times. The method iteratively expands the allowable state space based on predictions of future Overall Equipment Effectiveness, while a Bayesian optimizer identifies the optimal operating points. A statistical verification of clear decision rules further safeguards the optimization and makes risks measurable. The method was tested by optimizing the energy demand on a grinding machine at Mercedes-Benz AG in series production, where it achieved 15% savings without compromising process safety at any point.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827123009666/pdf?md5=56766fd2bf16afbf1c865bb268b4ae17&pid=1-s2.0-S2212827123009666-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Demand-Oriented Optimization of Machine Tools: a Closed Loop Approach for Safe Exploration in Series Production\",\"authors\":\"Alperen Can ,&nbsp;Ali Khaled El-Rahhal ,&nbsp;Hendrik Schulz ,&nbsp;Gregor Thiele ,&nbsp;Jörg Krüger\",\"doi\":\"10.1016/j.procir.2023.09.243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The resource- and energy-efficient operation of machine tools promises significant economic and ecological benefits. However, in the context of series production, optimization of the operating conditions can cause far-reaching consequences for the entire production chain. This paper presents a method for the safe exploration and optimization of new operating parameters on machine tools while ensuring process safety at all times. The method iteratively expands the allowable state space based on predictions of future Overall Equipment Effectiveness, while a Bayesian optimizer identifies the optimal operating points. A statistical verification of clear decision rules further safeguards the optimization and makes risks measurable. The method was tested by optimizing the energy demand on a grinding machine at Mercedes-Benz AG in series production, where it achieved 15% savings without compromising process safety at any point.</p></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212827123009666/pdf?md5=56766fd2bf16afbf1c865bb268b4ae17&pid=1-s2.0-S2212827123009666-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827123009666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827123009666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机床的资源和能源利用效率有望带来显著的经济和生态效益。然而,在批量生产中,操作条件的优化可能会对整个生产链产生深远影响。本文介绍了一种在确保工艺安全的前提下,安全探索和优化机床新运行参数的方法。该方法根据对未来整体设备效率的预测,迭代扩展可允许的状态空间,同时由贝叶斯优化器确定最佳操作点。对明确决策规则的统计验证进一步保障了优化,并使风险可衡量。该方法通过优化梅赛德斯-奔驰公司批量生产中磨床的能源需求进行了测试,在不影响任何工艺安全的情况下,节省了 15%的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demand-Oriented Optimization of Machine Tools: a Closed Loop Approach for Safe Exploration in Series Production

The resource- and energy-efficient operation of machine tools promises significant economic and ecological benefits. However, in the context of series production, optimization of the operating conditions can cause far-reaching consequences for the entire production chain. This paper presents a method for the safe exploration and optimization of new operating parameters on machine tools while ensuring process safety at all times. The method iteratively expands the allowable state space based on predictions of future Overall Equipment Effectiveness, while a Bayesian optimizer identifies the optimal operating points. A statistical verification of clear decision rules further safeguards the optimization and makes risks measurable. The method was tested by optimizing the energy demand on a grinding machine at Mercedes-Benz AG in series production, where it achieved 15% savings without compromising process safety at any point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信