Rekha Saha, Debbrata K Saha, Md Abdur Rahaman, Zening Fu, Jingyu Liu, Vince D Calhoun
{"title":"一种估算与精神问题、认知和年龄有关的发育中大脑功能网络连接纵向变化模式的方法。","authors":"Rekha Saha, Debbrata K Saha, Md Abdur Rahaman, Zening Fu, Jingyu Liu, Vince D Calhoun","doi":"10.1089/brain.2023.0040","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aim:</i></b> To develop an approach to evaluate multiple overlapping brain functional change patterns (FCPs) in functional network connectivity (FNC) and apply to study developmental changes in brain function. <b><i>Introduction:</i></b> FNC, the network analog of functional connectivity (FC), is commonly used to capture the intrinsic functional relationships among brain networks. Ongoing research on longitudinal changes of intrinsic FC across whole-brain functional networks has proven useful for characterizing age-related changes, but to date, there has been little focus on capturing multivariate patterns of FNC change with brain development. <b><i>Methods:</i></b> In this article, we introduce a novel approach to evaluate multiple overlapping FCPs by utilizing FNC matrices. We computed FNC matrices from the large-scale Adolescent Brain Cognitive Development data using fully automated spatially constrained independent component analysis (ICA). We next evaluated changes in these patterns for a 2-year period using a second-level ICA on the FNC change maps. <b><i>Results:</i></b> Our proposed approach reveals several highly structured (modular) FCPs and significant results including strong brain FC between visual and sensorimotor domains that increase with age. We also find several FCPs that are associated with longitudinal changes of psychiatric problems, cognition, and age in the developing brain. Interestingly, FCP cross-covariation, reflecting coupling between maximally independent FCPs, also shows significant differences between upper and lower quartile loadings for longitudinal changes in age, psychiatric problems, and cognition scores, as well as baseline age in the developing brain. FCP patterns and results were also found to be highly reliable based on analysis of data collected in a separate scan session. <b><i>Conclusion:</i></b> In sum, our results show evidence of consistent multivariate patterns of functional change in emerging adolescents and the proposed approach provides a useful and general tool to evaluate covarying patterns of whole-brain functional changes in longitudinal data. Impact statement In this article, we introduce a novel approach utilizing functional network connectivity (FNC) matrices to estimate multiple overlapping brain functional change patterns (FCPs). The findings demonstrate several well-structured FCPs that exhibit significant changes for a 2-year period, particularly in the functional connectivity between the visual and sensorimotor domains. In addition, we discover several FCPs that are associated with psychopathology, cognition, and age. Finally, our proposed approach for studying age-related FCPs represents a pioneering method that provides a valuable tool for assessing interconnected patterns of whole-brain functional changes in longitudinal data and may be useful to study change over time with applicability to many other areas, including the study of longitudinal changes within diagnostic groups, treatment effects, aging effects, and more.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"130-140"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954605/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Method to Estimate Longitudinal Change Patterns in Functional Network Connectivity of the Developing Brain Relevant to Psychiatric Problems, Cognition, and Age.\",\"authors\":\"Rekha Saha, Debbrata K Saha, Md Abdur Rahaman, Zening Fu, Jingyu Liu, Vince D Calhoun\",\"doi\":\"10.1089/brain.2023.0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aim:</i></b> To develop an approach to evaluate multiple overlapping brain functional change patterns (FCPs) in functional network connectivity (FNC) and apply to study developmental changes in brain function. <b><i>Introduction:</i></b> FNC, the network analog of functional connectivity (FC), is commonly used to capture the intrinsic functional relationships among brain networks. Ongoing research on longitudinal changes of intrinsic FC across whole-brain functional networks has proven useful for characterizing age-related changes, but to date, there has been little focus on capturing multivariate patterns of FNC change with brain development. <b><i>Methods:</i></b> In this article, we introduce a novel approach to evaluate multiple overlapping FCPs by utilizing FNC matrices. We computed FNC matrices from the large-scale Adolescent Brain Cognitive Development data using fully automated spatially constrained independent component analysis (ICA). We next evaluated changes in these patterns for a 2-year period using a second-level ICA on the FNC change maps. <b><i>Results:</i></b> Our proposed approach reveals several highly structured (modular) FCPs and significant results including strong brain FC between visual and sensorimotor domains that increase with age. We also find several FCPs that are associated with longitudinal changes of psychiatric problems, cognition, and age in the developing brain. Interestingly, FCP cross-covariation, reflecting coupling between maximally independent FCPs, also shows significant differences between upper and lower quartile loadings for longitudinal changes in age, psychiatric problems, and cognition scores, as well as baseline age in the developing brain. FCP patterns and results were also found to be highly reliable based on analysis of data collected in a separate scan session. <b><i>Conclusion:</i></b> In sum, our results show evidence of consistent multivariate patterns of functional change in emerging adolescents and the proposed approach provides a useful and general tool to evaluate covarying patterns of whole-brain functional changes in longitudinal data. Impact statement In this article, we introduce a novel approach utilizing functional network connectivity (FNC) matrices to estimate multiple overlapping brain functional change patterns (FCPs). The findings demonstrate several well-structured FCPs that exhibit significant changes for a 2-year period, particularly in the functional connectivity between the visual and sensorimotor domains. In addition, we discover several FCPs that are associated with psychopathology, cognition, and age. Finally, our proposed approach for studying age-related FCPs represents a pioneering method that provides a valuable tool for assessing interconnected patterns of whole-brain functional changes in longitudinal data and may be useful to study change over time with applicability to many other areas, including the study of longitudinal changes within diagnostic groups, treatment effects, aging effects, and more.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"130-140\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954605/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2023.0040\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0040","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A Method to Estimate Longitudinal Change Patterns in Functional Network Connectivity of the Developing Brain Relevant to Psychiatric Problems, Cognition, and Age.
Aim: To develop an approach to evaluate multiple overlapping brain functional change patterns (FCPs) in functional network connectivity (FNC) and apply to study developmental changes in brain function. Introduction: FNC, the network analog of functional connectivity (FC), is commonly used to capture the intrinsic functional relationships among brain networks. Ongoing research on longitudinal changes of intrinsic FC across whole-brain functional networks has proven useful for characterizing age-related changes, but to date, there has been little focus on capturing multivariate patterns of FNC change with brain development. Methods: In this article, we introduce a novel approach to evaluate multiple overlapping FCPs by utilizing FNC matrices. We computed FNC matrices from the large-scale Adolescent Brain Cognitive Development data using fully automated spatially constrained independent component analysis (ICA). We next evaluated changes in these patterns for a 2-year period using a second-level ICA on the FNC change maps. Results: Our proposed approach reveals several highly structured (modular) FCPs and significant results including strong brain FC between visual and sensorimotor domains that increase with age. We also find several FCPs that are associated with longitudinal changes of psychiatric problems, cognition, and age in the developing brain. Interestingly, FCP cross-covariation, reflecting coupling between maximally independent FCPs, also shows significant differences between upper and lower quartile loadings for longitudinal changes in age, psychiatric problems, and cognition scores, as well as baseline age in the developing brain. FCP patterns and results were also found to be highly reliable based on analysis of data collected in a separate scan session. Conclusion: In sum, our results show evidence of consistent multivariate patterns of functional change in emerging adolescents and the proposed approach provides a useful and general tool to evaluate covarying patterns of whole-brain functional changes in longitudinal data. Impact statement In this article, we introduce a novel approach utilizing functional network connectivity (FNC) matrices to estimate multiple overlapping brain functional change patterns (FCPs). The findings demonstrate several well-structured FCPs that exhibit significant changes for a 2-year period, particularly in the functional connectivity between the visual and sensorimotor domains. In addition, we discover several FCPs that are associated with psychopathology, cognition, and age. Finally, our proposed approach for studying age-related FCPs represents a pioneering method that provides a valuable tool for assessing interconnected patterns of whole-brain functional changes in longitudinal data and may be useful to study change over time with applicability to many other areas, including the study of longitudinal changes within diagnostic groups, treatment effects, aging effects, and more.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.