埋入式界面缺陷 2-溴-1-乙基吡啶鎓四氟硼酸盐钝化氧化锡层,用于高性能平面过氧化物太阳能电池

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Thambidurai M, Herlina Arianita Dewi, Wang Xizu, Anil Kanwat, Annalisa Bruno, Nripan Mathews, Cuong Dang, Hung D. Nguyen
{"title":"埋入式界面缺陷 2-溴-1-乙基吡啶鎓四氟硼酸盐钝化氧化锡层,用于高性能平面过氧化物太阳能电池","authors":"Thambidurai M, Herlina Arianita Dewi, Wang Xizu, Anil Kanwat, Annalisa Bruno, Nripan Mathews, Cuong Dang, Hung D. Nguyen","doi":"10.1016/j.mtener.2024.101514","DOIUrl":null,"url":null,"abstract":"<p>The electron transport layer (ETL)/perovskite interfaces play a crucial role in facilitating efficient charge transfer and minimizing recombination losses, which are key factors for achieving high power conversion efficiency (PCE) in perovskite solar cells (PSCs). Herein, a novel ionic liquid (IL) called 2-bromo-1-ethylpyridinium tetrafluoroborate (BEPBF<sub>4</sub>) is added between tin oxide (SnO<sub>2</sub>) and perovskite layers to improve the photovoltaic performance of PSCs. The BEPBF<sub>4</sub> interface modification not only reduces the defect density, increases the crystallinity, and aligns the energy bands at the interface, but also shortens the lifetime of the charge carriers, resulting in improved PCE and stability. Consequently, the device modified with BEPBF<sub>4</sub> achieved a PCE of 20.14% and retained 94% of the initial PCE without encapsulation, in contrast to the control device (18.41%), which retained only 82% of the initial PCE after 1000 h of storage at ambient conditions. In addition, the BEPBF<sub>4</sub>-PSCs exhibited significantly better thermal stability, retaining 64% of the initial PCE after 400 h of continuous thermal aging at 85 °C, compared to only 31% for the unencapsulated pristine device.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"56 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buried interface defects 2-bromo-1-ethylpyridinium tetrafluoroborate passivates tin oxide layer for high performance planar perovskite solar cells\",\"authors\":\"Thambidurai M, Herlina Arianita Dewi, Wang Xizu, Anil Kanwat, Annalisa Bruno, Nripan Mathews, Cuong Dang, Hung D. Nguyen\",\"doi\":\"10.1016/j.mtener.2024.101514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electron transport layer (ETL)/perovskite interfaces play a crucial role in facilitating efficient charge transfer and minimizing recombination losses, which are key factors for achieving high power conversion efficiency (PCE) in perovskite solar cells (PSCs). Herein, a novel ionic liquid (IL) called 2-bromo-1-ethylpyridinium tetrafluoroborate (BEPBF<sub>4</sub>) is added between tin oxide (SnO<sub>2</sub>) and perovskite layers to improve the photovoltaic performance of PSCs. The BEPBF<sub>4</sub> interface modification not only reduces the defect density, increases the crystallinity, and aligns the energy bands at the interface, but also shortens the lifetime of the charge carriers, resulting in improved PCE and stability. Consequently, the device modified with BEPBF<sub>4</sub> achieved a PCE of 20.14% and retained 94% of the initial PCE without encapsulation, in contrast to the control device (18.41%), which retained only 82% of the initial PCE after 1000 h of storage at ambient conditions. In addition, the BEPBF<sub>4</sub>-PSCs exhibited significantly better thermal stability, retaining 64% of the initial PCE after 400 h of continuous thermal aging at 85 °C, compared to only 31% for the unencapsulated pristine device.</p>\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101514\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101514","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电子传输层(ETL)/过氧化物界面在促进高效电荷转移和最大限度减少重组损耗方面发挥着至关重要的作用,而这正是过氧化物太阳能电池(PSCs)实现高功率转换效率(PCE)的关键因素。在这里,一种名为 2-溴-1-乙基吡啶鎓四氟硼酸盐(BEPBF4)的新型离子液体(IL)被添加到氧化锡(SnO2)和过氧化物层之间,以改善 PSC 的光伏性能。BEPBF4 界面改性不仅能降低缺陷密度、增加结晶度、调整界面能带,还能缩短电荷载流子的寿命,从而提高 PCE 和稳定性。因此,使用 BEPBF4 修饰的器件实现了 20.14% 的 PCE,并且在没有封装的情况下保留了 94% 的初始 PCE,而对照器件(18.41%)在环境条件下存储 1000 小时后仅保留了 82% 的初始 PCE。此外,BEPBF4-PSC 的热稳定性也显著提高,在 85 °C 下持续热老化 400 小时后,仍能保持 64% 的初始 PCE,而未封装的原始器件仅能保持 31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Buried interface defects 2-bromo-1-ethylpyridinium tetrafluoroborate passivates tin oxide layer for high performance planar perovskite solar cells

Buried interface defects 2-bromo-1-ethylpyridinium tetrafluoroborate passivates tin oxide layer for high performance planar perovskite solar cells

The electron transport layer (ETL)/perovskite interfaces play a crucial role in facilitating efficient charge transfer and minimizing recombination losses, which are key factors for achieving high power conversion efficiency (PCE) in perovskite solar cells (PSCs). Herein, a novel ionic liquid (IL) called 2-bromo-1-ethylpyridinium tetrafluoroborate (BEPBF4) is added between tin oxide (SnO2) and perovskite layers to improve the photovoltaic performance of PSCs. The BEPBF4 interface modification not only reduces the defect density, increases the crystallinity, and aligns the energy bands at the interface, but also shortens the lifetime of the charge carriers, resulting in improved PCE and stability. Consequently, the device modified with BEPBF4 achieved a PCE of 20.14% and retained 94% of the initial PCE without encapsulation, in contrast to the control device (18.41%), which retained only 82% of the initial PCE after 1000 h of storage at ambient conditions. In addition, the BEPBF4-PSCs exhibited significantly better thermal stability, retaining 64% of the initial PCE after 400 h of continuous thermal aging at 85 °C, compared to only 31% for the unencapsulated pristine device.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信