Renata Martins Gomes, Bernhard Aichernig, Marcel Baunach
{"title":"嵌入式软件可移植性和验证框架:从形式模型到低级代码","authors":"Renata Martins Gomes, Bernhard Aichernig, Marcel Baunach","doi":"10.1007/s10270-023-01144-y","DOIUrl":null,"url":null,"abstract":"<p>Porting software to new target architectures is a common challenge, particularly when dealing with low-level functionality in drivers or OS kernels that interact directly with hardware. Traditionally, adapting code for different hardware platforms has been a manual and error-prone process. However, with the growing demand for dependability and the increasing hardware diversity in systems like the IoT, new software development approaches are essential. This includes rigorous methods for verifying and automatically porting Real-Time Operating Systems (RTOS) to various devices. Our framework addresses this challenge through formal methods and code generation for embedded RTOS. We demonstrate a hardware-specific part of a kernel model in Event-B, ensuring correctness according to the specification. Since hardware details are only added in late modeling stages, we can reuse most of the model and proofs for multiple targets. In a proof of concept, we refine the generic model for two different architectures, also ensuring safety and liveness properties. We then showcase automatic low-level code generation from the model. Finally, a hardware-independent factorial function model illustrates more potential of our approach.</p>","PeriodicalId":49507,"journal":{"name":"Software and Systems Modeling","volume":"2 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for embedded software portability and verification: from formal models to low-level code\",\"authors\":\"Renata Martins Gomes, Bernhard Aichernig, Marcel Baunach\",\"doi\":\"10.1007/s10270-023-01144-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Porting software to new target architectures is a common challenge, particularly when dealing with low-level functionality in drivers or OS kernels that interact directly with hardware. Traditionally, adapting code for different hardware platforms has been a manual and error-prone process. However, with the growing demand for dependability and the increasing hardware diversity in systems like the IoT, new software development approaches are essential. This includes rigorous methods for verifying and automatically porting Real-Time Operating Systems (RTOS) to various devices. Our framework addresses this challenge through formal methods and code generation for embedded RTOS. We demonstrate a hardware-specific part of a kernel model in Event-B, ensuring correctness according to the specification. Since hardware details are only added in late modeling stages, we can reuse most of the model and proofs for multiple targets. In a proof of concept, we refine the generic model for two different architectures, also ensuring safety and liveness properties. We then showcase automatic low-level code generation from the model. Finally, a hardware-independent factorial function model illustrates more potential of our approach.</p>\",\"PeriodicalId\":49507,\"journal\":{\"name\":\"Software and Systems Modeling\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software and Systems Modeling\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10270-023-01144-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Systems Modeling","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10270-023-01144-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A framework for embedded software portability and verification: from formal models to low-level code
Porting software to new target architectures is a common challenge, particularly when dealing with low-level functionality in drivers or OS kernels that interact directly with hardware. Traditionally, adapting code for different hardware platforms has been a manual and error-prone process. However, with the growing demand for dependability and the increasing hardware diversity in systems like the IoT, new software development approaches are essential. This includes rigorous methods for verifying and automatically porting Real-Time Operating Systems (RTOS) to various devices. Our framework addresses this challenge through formal methods and code generation for embedded RTOS. We demonstrate a hardware-specific part of a kernel model in Event-B, ensuring correctness according to the specification. Since hardware details are only added in late modeling stages, we can reuse most of the model and proofs for multiple targets. In a proof of concept, we refine the generic model for two different architectures, also ensuring safety and liveness properties. We then showcase automatic low-level code generation from the model. Finally, a hardware-independent factorial function model illustrates more potential of our approach.
期刊介绍:
We invite authors to submit papers that discuss and analyze research challenges and experiences pertaining to software and system modeling languages, techniques, tools, practices and other facets. The following are some of the topic areas that are of special interest, but the journal publishes on a wide range of software and systems modeling concerns:
Domain-specific models and modeling standards;
Model-based testing techniques;
Model-based simulation techniques;
Formal syntax and semantics of modeling languages such as the UML;
Rigorous model-based analysis;
Model composition, refinement and transformation;
Software Language Engineering;
Modeling Languages in Science and Engineering;
Language Adaptation and Composition;
Metamodeling techniques;
Measuring quality of models and languages;
Ontological approaches to model engineering;
Generating test and code artifacts from models;
Model synthesis;
Methodology;
Model development tool environments;
Modeling Cyberphysical Systems;
Data intensive modeling;
Derivation of explicit models from data;
Case studies and experience reports with significant modeling lessons learned;
Comparative analyses of modeling languages and techniques;
Scientific assessment of modeling practices