{"title":"使小麦耐盐:还缺什么?","authors":"Lukasz Kotula, Noreen Zahra, Muhammad Farooq, Sergey Shabala, Kadambot H.M. Siddique","doi":"10.1016/j.cj.2024.01.005","DOIUrl":null,"url":null,"abstract":"<p>The growing global population presents a significant challenge to ensuring food security, further compounded by the increasing threat of salinity to agricultural productivity. Wheat, a major staple food providing 20 % of the total caloric intake for humans, is susceptible to salinity stress. Developing new salt-tolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend. This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs. We contend that traditional approaches to breeding wheat for Na<sup>+</sup> exclusion have limited applicability across varying soil salinity levels, rendering them inefficient. Moreover, we question current phenotyping approaches, advocating for a shift from whole-plant assessments to cell-based phenotyping platforms. Finally, we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.</p>","PeriodicalId":501058,"journal":{"name":"The Crop Journal","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making wheat salt tolerant: What is missing?\",\"authors\":\"Lukasz Kotula, Noreen Zahra, Muhammad Farooq, Sergey Shabala, Kadambot H.M. Siddique\",\"doi\":\"10.1016/j.cj.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing global population presents a significant challenge to ensuring food security, further compounded by the increasing threat of salinity to agricultural productivity. Wheat, a major staple food providing 20 % of the total caloric intake for humans, is susceptible to salinity stress. Developing new salt-tolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend. This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs. We contend that traditional approaches to breeding wheat for Na<sup>+</sup> exclusion have limited applicability across varying soil salinity levels, rendering them inefficient. Moreover, we question current phenotyping approaches, advocating for a shift from whole-plant assessments to cell-based phenotyping platforms. Finally, we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.</p>\",\"PeriodicalId\":501058,\"journal\":{\"name\":\"The Crop Journal\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Crop Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cj.2024.01.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Crop Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cj.2024.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The growing global population presents a significant challenge to ensuring food security, further compounded by the increasing threat of salinity to agricultural productivity. Wheat, a major staple food providing 20 % of the total caloric intake for humans, is susceptible to salinity stress. Developing new salt-tolerant wheat cultivars using wheat breeding techniques and genetic modifications is crucial to addressing this issue while ensuring the sustainability and efficiency of wheat production systems within the prevailing climate trend. This review overviews the current landscape in this field and explores key mechanisms and associated genetic traits that warrant attention within breeding programs. We contend that traditional approaches to breeding wheat for Na+ exclusion have limited applicability across varying soil salinity levels, rendering them inefficient. Moreover, we question current phenotyping approaches, advocating for a shift from whole-plant assessments to cell-based phenotyping platforms. Finally, we propose a broader use of wild wheat relatives and various breeding strategies to tap into their germplasm pool for inclusion in wheat breeding programs.