贝叶斯逆问题计算框架分析:网格细化下的集合卡尔曼更新和 MAP 估计器

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Daniel Sanz-Alonso, Nathan Waniorek
{"title":"贝叶斯逆问题计算框架分析:网格细化下的集合卡尔曼更新和 MAP 估计器","authors":"Daniel Sanz-Alonso, Nathan Waniorek","doi":"10.1137/23m1567035","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 30-68, March 2024. <br/> Abstract. This paper analyzes a popular computational framework for solving infinite-dimensional Bayesian inverse problems, discretizing the prior and the forward model in a finite-dimensional weighted inner product space. We demonstrate the benefit of working on a weighted space by establishing operator-norm bounds for finite element and graph-based discretizations of Matérn-type priors and deconvolution forward models. For linear-Gaussian inverse problems, we develop a general theory for characterizing the error in the approximation to the posterior. We also embed the computational framework into ensemble Kalman methods and maximum a posteriori (MAP) estimators for nonlinear inverse problems. Our operator-norm bounds for prior discretizations guarantee the scalability and accuracy of these algorithms under mesh refinement.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a Computational Framework for Bayesian Inverse Problems: Ensemble Kalman Updates and MAP Estimators under Mesh Refinement\",\"authors\":\"Daniel Sanz-Alonso, Nathan Waniorek\",\"doi\":\"10.1137/23m1567035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 30-68, March 2024. <br/> Abstract. This paper analyzes a popular computational framework for solving infinite-dimensional Bayesian inverse problems, discretizing the prior and the forward model in a finite-dimensional weighted inner product space. We demonstrate the benefit of working on a weighted space by establishing operator-norm bounds for finite element and graph-based discretizations of Matérn-type priors and deconvolution forward models. For linear-Gaussian inverse problems, we develop a general theory for characterizing the error in the approximation to the posterior. We also embed the computational framework into ensemble Kalman methods and maximum a posteriori (MAP) estimators for nonlinear inverse problems. Our operator-norm bounds for prior discretizations guarantee the scalability and accuracy of these algorithms under mesh refinement.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1567035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1567035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA 不确定性量化期刊》,第 12 卷,第 1 期,第 30-68 页,2024 年 3 月。 摘要本文分析了解决无限维贝叶斯逆问题的流行计算框架,即在有限维加权内积空间中离散先验和前向模型。我们通过为基于有限元和图的马特恩型先验离散化和去卷积前向模型建立算子规范边界,证明了在加权空间工作的好处。对于线性高斯反演问题,我们开发了一种通用理论,用于描述后验近似中的误差。我们还将计算框架嵌入到集合卡尔曼方法和非线性逆问题的最大后验(MAP)估计器中。我们对先验离散化的算子规范约束保证了这些算法在网格细化情况下的可扩展性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a Computational Framework for Bayesian Inverse Problems: Ensemble Kalman Updates and MAP Estimators under Mesh Refinement
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 30-68, March 2024.
Abstract. This paper analyzes a popular computational framework for solving infinite-dimensional Bayesian inverse problems, discretizing the prior and the forward model in a finite-dimensional weighted inner product space. We demonstrate the benefit of working on a weighted space by establishing operator-norm bounds for finite element and graph-based discretizations of Matérn-type priors and deconvolution forward models. For linear-Gaussian inverse problems, we develop a general theory for characterizing the error in the approximation to the posterior. We also embed the computational framework into ensemble Kalman methods and maximum a posteriori (MAP) estimators for nonlinear inverse problems. Our operator-norm bounds for prior discretizations guarantee the scalability and accuracy of these algorithms under mesh refinement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信