Haopeng Wang , Berj Bardizbanian , Ziling Zhu , He Wang , Chenyun Dai , Edward A. Clancy
{"title":"评估两个上肢关节的通用 EMG 扭矩模型","authors":"Haopeng Wang , Berj Bardizbanian , Ziling Zhu , He Wang , Chenyun Dai , Edward A. Clancy","doi":"10.1016/j.jelekin.2024.102864","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced single-use dynamic EMG-torque models require burdensome subject-specific calibration contractions and have historically been <em>assumed</em> to produce lower error than generic models (i.e., models that are identical across subjects and muscles). To investigate this assumption, we studied generic one degree of freedom (DoF) models derived from the ensemble median of subject-specific models, evaluated across subject, DoF and joint. We used elbow (<em>N</em> = 64) and hand-wrist (<em>N</em> = 9) datasets. Subject-specific elbow models performed statistically better [5.79 ± 1.89 %MVT (maximum voluntary torque) error] than generic elbow models (6.21 ± 1.85 %MVT error). However, there were no statistical differences between subject-specific vs. generic models <em>within</em><span> each hand-wrist DoF. Next, we evaluated generic models across joints. The best hand-wrist generic model had errors of 6.29 ± 1.85 %MVT when applied to the elbow. The elbow generic model had errors of 7.04 ± 2.29 %MVT when applied to the hand-wrist. The generic elbow model was statistically better in both joints, compared to the generic hand-wrist model. Finally, we tested Butterworth filter models (a simpler generic model), finding no statistical differences between optimum Butterworth and subject-specific models. Overall, generic models simplified EMG-torque training without substantive performance degradation and provided the possibility of transfer learning between joints.</span></p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"75 ","pages":"Article 102864"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of generic EMG-Torque models across two Upper-Limb joints\",\"authors\":\"Haopeng Wang , Berj Bardizbanian , Ziling Zhu , He Wang , Chenyun Dai , Edward A. Clancy\",\"doi\":\"10.1016/j.jelekin.2024.102864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advanced single-use dynamic EMG-torque models require burdensome subject-specific calibration contractions and have historically been <em>assumed</em> to produce lower error than generic models (i.e., models that are identical across subjects and muscles). To investigate this assumption, we studied generic one degree of freedom (DoF) models derived from the ensemble median of subject-specific models, evaluated across subject, DoF and joint. We used elbow (<em>N</em> = 64) and hand-wrist (<em>N</em> = 9) datasets. Subject-specific elbow models performed statistically better [5.79 ± 1.89 %MVT (maximum voluntary torque) error] than generic elbow models (6.21 ± 1.85 %MVT error). However, there were no statistical differences between subject-specific vs. generic models <em>within</em><span> each hand-wrist DoF. Next, we evaluated generic models across joints. The best hand-wrist generic model had errors of 6.29 ± 1.85 %MVT when applied to the elbow. The elbow generic model had errors of 7.04 ± 2.29 %MVT when applied to the hand-wrist. The generic elbow model was statistically better in both joints, compared to the generic hand-wrist model. Finally, we tested Butterworth filter models (a simpler generic model), finding no statistical differences between optimum Butterworth and subject-specific models. Overall, generic models simplified EMG-torque training without substantive performance degradation and provided the possibility of transfer learning between joints.</span></p></div>\",\"PeriodicalId\":56123,\"journal\":{\"name\":\"Journal of Electromyography and Kinesiology\",\"volume\":\"75 \",\"pages\":\"Article 102864\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromyography and Kinesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050641124000087\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641124000087","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Evaluation of generic EMG-Torque models across two Upper-Limb joints
Advanced single-use dynamic EMG-torque models require burdensome subject-specific calibration contractions and have historically been assumed to produce lower error than generic models (i.e., models that are identical across subjects and muscles). To investigate this assumption, we studied generic one degree of freedom (DoF) models derived from the ensemble median of subject-specific models, evaluated across subject, DoF and joint. We used elbow (N = 64) and hand-wrist (N = 9) datasets. Subject-specific elbow models performed statistically better [5.79 ± 1.89 %MVT (maximum voluntary torque) error] than generic elbow models (6.21 ± 1.85 %MVT error). However, there were no statistical differences between subject-specific vs. generic models within each hand-wrist DoF. Next, we evaluated generic models across joints. The best hand-wrist generic model had errors of 6.29 ± 1.85 %MVT when applied to the elbow. The elbow generic model had errors of 7.04 ± 2.29 %MVT when applied to the hand-wrist. The generic elbow model was statistically better in both joints, compared to the generic hand-wrist model. Finally, we tested Butterworth filter models (a simpler generic model), finding no statistical differences between optimum Butterworth and subject-specific models. Overall, generic models simplified EMG-torque training without substantive performance degradation and provided the possibility of transfer learning between joints.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.