{"title":"ARGo:基于增强现实技术的手机围棋撞石赛","authors":"Dohui Lee, Sohyun Won, Jiwon Kim, Hyuk-Yoon Kwon","doi":"10.1007/s10055-023-00919-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, we present a mobile Go stone collision game based on augmented reality, which we call ARGo, inspired by the traditional Korean board game, Alkkagi. ARGo aims to resolve two main issues: (1) the portability and space constraints of the original Alkkagi and (2) the limited sense of reality due to the touchscreen-based interface of the existing mobile Alkkagi games. To improve a sense of the reality of the game, ARGo provides a gameplay interface similar to the original Alkkagi by recognizing the user‘s hand motion based on AR. Additionally, it provides a customization mechanism for each user to improve the recognition of the hand motion and the strength of the attack considering each user‘s characteristics. Finally, we make the following three main contributions. First, we employ the automata theory to design the game and collision scenarios between stones. Consequently, we can clearly define the complicated states incurred by AR-based motion recognition and collisions between virtual objects. Second, we propose a collision equation based on Continuous Collision Detection tailored to ARGo, i.e., Go stones and their collisions. Through experimental studies, we demonstrate that the collision equation enables the simulation of the exact collision effects. Third, through user experience studies, we verify the effectiveness of ARGo by showing the effects of the functions implemented in ARGo and its superiority over the existing mobile game Alkkagi Mania.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":"14 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARGo: augmented reality-based mobile Go stone collision game\",\"authors\":\"Dohui Lee, Sohyun Won, Jiwon Kim, Hyuk-Yoon Kwon\",\"doi\":\"10.1007/s10055-023-00919-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we present a mobile Go stone collision game based on augmented reality, which we call ARGo, inspired by the traditional Korean board game, Alkkagi. ARGo aims to resolve two main issues: (1) the portability and space constraints of the original Alkkagi and (2) the limited sense of reality due to the touchscreen-based interface of the existing mobile Alkkagi games. To improve a sense of the reality of the game, ARGo provides a gameplay interface similar to the original Alkkagi by recognizing the user‘s hand motion based on AR. Additionally, it provides a customization mechanism for each user to improve the recognition of the hand motion and the strength of the attack considering each user‘s characteristics. Finally, we make the following three main contributions. First, we employ the automata theory to design the game and collision scenarios between stones. Consequently, we can clearly define the complicated states incurred by AR-based motion recognition and collisions between virtual objects. Second, we propose a collision equation based on Continuous Collision Detection tailored to ARGo, i.e., Go stones and their collisions. Through experimental studies, we demonstrate that the collision equation enables the simulation of the exact collision effects. Third, through user experience studies, we verify the effectiveness of ARGo by showing the effects of the functions implemented in ARGo and its superiority over the existing mobile game Alkkagi Mania.</p>\",\"PeriodicalId\":23727,\"journal\":{\"name\":\"Virtual Reality\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10055-023-00919-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-023-00919-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
ARGo: augmented reality-based mobile Go stone collision game
In this study, we present a mobile Go stone collision game based on augmented reality, which we call ARGo, inspired by the traditional Korean board game, Alkkagi. ARGo aims to resolve two main issues: (1) the portability and space constraints of the original Alkkagi and (2) the limited sense of reality due to the touchscreen-based interface of the existing mobile Alkkagi games. To improve a sense of the reality of the game, ARGo provides a gameplay interface similar to the original Alkkagi by recognizing the user‘s hand motion based on AR. Additionally, it provides a customization mechanism for each user to improve the recognition of the hand motion and the strength of the attack considering each user‘s characteristics. Finally, we make the following three main contributions. First, we employ the automata theory to design the game and collision scenarios between stones. Consequently, we can clearly define the complicated states incurred by AR-based motion recognition and collisions between virtual objects. Second, we propose a collision equation based on Continuous Collision Detection tailored to ARGo, i.e., Go stones and their collisions. Through experimental studies, we demonstrate that the collision equation enables the simulation of the exact collision effects. Third, through user experience studies, we verify the effectiveness of ARGo by showing the effects of the functions implemented in ARGo and its superiority over the existing mobile game Alkkagi Mania.
期刊介绍:
The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to:
Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications
Development and evaluation of systems, tools, techniques and software that advance the field, including:
Display technologies, including Head Mounted Displays, simulators and immersive displays
Haptic technologies, including novel devices, interaction and rendering
Interaction management, including gesture control, eye gaze, biosensors and wearables
Tracking technologies
VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling.
Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence
Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems
Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.