Zichuan Xu, Haiyang Qiao, Weifa Liang, Zhou Xu, Qiufen Xia, Pan Zhou, Omer F. Rana, Wenzheng Xu
{"title":"无人机辅助移动边缘计算中及时处理数据流的流时最小化","authors":"Zichuan Xu, Haiyang Qiao, Weifa Liang, Zhou Xu, Qiufen Xia, Pan Zhou, Omer F. Rana, Wenzheng Xu","doi":"10.1145/3643813","DOIUrl":null,"url":null,"abstract":"<p>Unmanned Aerial Vehicle (UAV) has gained increasing attentions by both academic and industrial communities, due to its flexible deployment and efficient line-of-sight communication. Recently, UAVs equipped with base stations have been envisioned as a key technology to provide 5G network services for mobile users. In this paper, we provide timely services on the data streams of mobile users in a UAV-aided Mobile Edge Computing (MEC) network, in which each UAV is equipped with a 5G small-cell base station for communication and data processing. Specifically, we first formulate a flow-time minimization problem by jointly caching services and offloading tasks of mobile users to the UAV-aided MEC with the aim to minimize the flow-time, where the flow-time of a user request is referred to the time duration from the request issuing time point to its completion point, subject to resource and energy capacity on each UAV. We then propose a spatial-temporal learning optimization framework. We also devise an online algorithm with a competitive ratio for the problem based upon the framework, by leveraging the round-robin scheduling and dual fitting techniques. Finally, we evaluate the performance of the proposed algorithms through experimental simulation. The simulation results demonstrated that the proposed algorithms outperform their comparison counterparts, by reducing the flow-time no less than 19% on average.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"2 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-Time Minimization for Timely Data Stream Processing in UAV-Aided Mobile Edge Computing\",\"authors\":\"Zichuan Xu, Haiyang Qiao, Weifa Liang, Zhou Xu, Qiufen Xia, Pan Zhou, Omer F. Rana, Wenzheng Xu\",\"doi\":\"10.1145/3643813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unmanned Aerial Vehicle (UAV) has gained increasing attentions by both academic and industrial communities, due to its flexible deployment and efficient line-of-sight communication. Recently, UAVs equipped with base stations have been envisioned as a key technology to provide 5G network services for mobile users. In this paper, we provide timely services on the data streams of mobile users in a UAV-aided Mobile Edge Computing (MEC) network, in which each UAV is equipped with a 5G small-cell base station for communication and data processing. Specifically, we first formulate a flow-time minimization problem by jointly caching services and offloading tasks of mobile users to the UAV-aided MEC with the aim to minimize the flow-time, where the flow-time of a user request is referred to the time duration from the request issuing time point to its completion point, subject to resource and energy capacity on each UAV. We then propose a spatial-temporal learning optimization framework. We also devise an online algorithm with a competitive ratio for the problem based upon the framework, by leveraging the round-robin scheduling and dual fitting techniques. Finally, we evaluate the performance of the proposed algorithms through experimental simulation. The simulation results demonstrated that the proposed algorithms outperform their comparison counterparts, by reducing the flow-time no less than 19% on average.</p>\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643813\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643813","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Flow-Time Minimization for Timely Data Stream Processing in UAV-Aided Mobile Edge Computing
Unmanned Aerial Vehicle (UAV) has gained increasing attentions by both academic and industrial communities, due to its flexible deployment and efficient line-of-sight communication. Recently, UAVs equipped with base stations have been envisioned as a key technology to provide 5G network services for mobile users. In this paper, we provide timely services on the data streams of mobile users in a UAV-aided Mobile Edge Computing (MEC) network, in which each UAV is equipped with a 5G small-cell base station for communication and data processing. Specifically, we first formulate a flow-time minimization problem by jointly caching services and offloading tasks of mobile users to the UAV-aided MEC with the aim to minimize the flow-time, where the flow-time of a user request is referred to the time duration from the request issuing time point to its completion point, subject to resource and energy capacity on each UAV. We then propose a spatial-temporal learning optimization framework. We also devise an online algorithm with a competitive ratio for the problem based upon the framework, by leveraging the round-robin scheduling and dual fitting techniques. Finally, we evaluate the performance of the proposed algorithms through experimental simulation. The simulation results demonstrated that the proposed algorithms outperform their comparison counterparts, by reducing the flow-time no less than 19% on average.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.