在极端范围差异背景下估算社会经济普查指标的多瞥深度学习架构

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dan Runfola, Anthony Stefanidis, Zhonghui Lv, Joseph O’Brien, Heather Baier
{"title":"在极端范围差异背景下估算社会经济普查指标的多瞥深度学习架构","authors":"Dan Runfola, Anthony Stefanidis, Zhonghui Lv, Joseph O’Brien, Heather Baier","doi":"10.1080/13658816.2024.2305636","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) are leveraged for a wide range of satellite imagery information extraction tasks. However, for tasks which seek to estimate aggregated information across highly...","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"80 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-glimpse deep learning architecture to estimate socioeconomic census metrics in the context of extreme scope variance\",\"authors\":\"Dan Runfola, Anthony Stefanidis, Zhonghui Lv, Joseph O’Brien, Heather Baier\",\"doi\":\"10.1080/13658816.2024.2305636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) are leveraged for a wide range of satellite imagery information extraction tasks. However, for tasks which seek to estimate aggregated information across highly...\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2024.2305636\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2024.2305636","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)被广泛用于卫星图像信息提取任务。然而,对于那些需要估算高度复杂的卫星图像中的综合信息的任务,卷积神经网络(CNNs)却显得力不从心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-glimpse deep learning architecture to estimate socioeconomic census metrics in the context of extreme scope variance
Convolutional Neural Networks (CNNs) are leveraged for a wide range of satellite imagery information extraction tasks. However, for tasks which seek to estimate aggregated information across highly...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信