{"title":"面向 5G 毫米波 N257、N260 和 N262 波段应用的紧凑型 MIMO 天线的设计与分析","authors":"","doi":"10.1007/s10762-024-00971-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This research presents the design and analysis of a compact MIMO antenna tailored for 5G millimeter-wave applications, specifically targeting bands N257, N260, and N262. The antenna, characterized by its straightforward design, maintains compact dimensions of 10 mm × 16 mm while delivering exceptional performance with high gain. Employing Rogers RT/Duroid 5880 substrate material with a thickness of 0.508 mm, the antenna consists of two crescent-shaped radiating elements (patches) situated on the top surface of the dielectric material, complemented by a slotted ground on the bottom. The radiating elements are fed through a 50-Ω microstrip line. Operating across three distinct bands, the antenna’s capabilities are outlined as follows: the first band spans from 27.2 to 29 GHz, centering around 28 GHz; the second band encompasses the frequency range from 34 to 40.2 GHz, with a center frequency of 39 GHz achieved through slotting crescent-shaped radiating elements; the third band, ranging from 47.5 to 51.3 GHz with a center frequency of 48.7 GHz, is attained by engraving circular slots on the ground. To validate simulation outcomes, a hardware prototype of the antenna is manufactured, showcasing excellent agreement between simulations and measurements. The antenna design is implemented using the CST Microwave Studio software tool and is benchmarked against existing literature. Key attributes of the proposed antenna include its compact size, simple geometry, wide bandwidth, and high gain. The antenna’s favorable MIMO parameters (ECC, TARC, DG, and CCL), coupled with minimal spacing between elements, position it as a promising candidate for forthcoming 5G millimeter-wave communication applications.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"4 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of a Compact MIMO Antenna for 5G mmWave N257, N260, and N262 Band Applications\",\"authors\":\"\",\"doi\":\"10.1007/s10762-024-00971-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This research presents the design and analysis of a compact MIMO antenna tailored for 5G millimeter-wave applications, specifically targeting bands N257, N260, and N262. The antenna, characterized by its straightforward design, maintains compact dimensions of 10 mm × 16 mm while delivering exceptional performance with high gain. Employing Rogers RT/Duroid 5880 substrate material with a thickness of 0.508 mm, the antenna consists of two crescent-shaped radiating elements (patches) situated on the top surface of the dielectric material, complemented by a slotted ground on the bottom. The radiating elements are fed through a 50-Ω microstrip line. Operating across three distinct bands, the antenna’s capabilities are outlined as follows: the first band spans from 27.2 to 29 GHz, centering around 28 GHz; the second band encompasses the frequency range from 34 to 40.2 GHz, with a center frequency of 39 GHz achieved through slotting crescent-shaped radiating elements; the third band, ranging from 47.5 to 51.3 GHz with a center frequency of 48.7 GHz, is attained by engraving circular slots on the ground. To validate simulation outcomes, a hardware prototype of the antenna is manufactured, showcasing excellent agreement between simulations and measurements. The antenna design is implemented using the CST Microwave Studio software tool and is benchmarked against existing literature. Key attributes of the proposed antenna include its compact size, simple geometry, wide bandwidth, and high gain. The antenna’s favorable MIMO parameters (ECC, TARC, DG, and CCL), coupled with minimal spacing between elements, position it as a promising candidate for forthcoming 5G millimeter-wave communication applications.</p>\",\"PeriodicalId\":16181,\"journal\":{\"name\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10762-024-00971-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00971-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Analysis of a Compact MIMO Antenna for 5G mmWave N257, N260, and N262 Band Applications
Abstract
This research presents the design and analysis of a compact MIMO antenna tailored for 5G millimeter-wave applications, specifically targeting bands N257, N260, and N262. The antenna, characterized by its straightforward design, maintains compact dimensions of 10 mm × 16 mm while delivering exceptional performance with high gain. Employing Rogers RT/Duroid 5880 substrate material with a thickness of 0.508 mm, the antenna consists of two crescent-shaped radiating elements (patches) situated on the top surface of the dielectric material, complemented by a slotted ground on the bottom. The radiating elements are fed through a 50-Ω microstrip line. Operating across three distinct bands, the antenna’s capabilities are outlined as follows: the first band spans from 27.2 to 29 GHz, centering around 28 GHz; the second band encompasses the frequency range from 34 to 40.2 GHz, with a center frequency of 39 GHz achieved through slotting crescent-shaped radiating elements; the third band, ranging from 47.5 to 51.3 GHz with a center frequency of 48.7 GHz, is attained by engraving circular slots on the ground. To validate simulation outcomes, a hardware prototype of the antenna is manufactured, showcasing excellent agreement between simulations and measurements. The antenna design is implemented using the CST Microwave Studio software tool and is benchmarked against existing literature. Key attributes of the proposed antenna include its compact size, simple geometry, wide bandwidth, and high gain. The antenna’s favorable MIMO parameters (ECC, TARC, DG, and CCL), coupled with minimal spacing between elements, position it as a promising candidate for forthcoming 5G millimeter-wave communication applications.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.