{"title":"具有缓慢衰减振荡的朗道解周围扰动纳维-斯托克斯系统的全局存在性","authors":"Jiayan Wu, Cuili Zhai, Jingjing Zhang, Ting Zhang","doi":"10.4310/cms.2024.v22.n2.a10","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the perturbed Navier–Stokes system around the Landau solutions. Using the energy method and the continuation method, we show the global existence of the $L^2$ local energy solution for the perturbed Navier–Stokes system with the oscillation decay initial data $v_0 \\in E^2_{\\sigma} + L^3_{\\operatorname{uloc}} \\,$.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"122 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence of perturbed Navier–Stokes system around Landau solutions with slowly decaying oscillation\",\"authors\":\"Jiayan Wu, Cuili Zhai, Jingjing Zhang, Ting Zhang\",\"doi\":\"10.4310/cms.2024.v22.n2.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the perturbed Navier–Stokes system around the Landau solutions. Using the energy method and the continuation method, we show the global existence of the $L^2$ local energy solution for the perturbed Navier–Stokes system with the oscillation decay initial data $v_0 \\\\in E^2_{\\\\sigma} + L^3_{\\\\operatorname{uloc}} \\\\,$.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n2.a10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n2.a10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global existence of perturbed Navier–Stokes system around Landau solutions with slowly decaying oscillation
In this paper, we consider the perturbed Navier–Stokes system around the Landau solutions. Using the energy method and the continuation method, we show the global existence of the $L^2$ local energy solution for the perturbed Navier–Stokes system with the oscillation decay initial data $v_0 \in E^2_{\sigma} + L^3_{\operatorname{uloc}} \,$.
期刊介绍:
Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.