具有缓慢衰减振荡的朗道解周围扰动纳维-斯托克斯系统的全局存在性

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Jiayan Wu, Cuili Zhai, Jingjing Zhang, Ting Zhang
{"title":"具有缓慢衰减振荡的朗道解周围扰动纳维-斯托克斯系统的全局存在性","authors":"Jiayan Wu, Cuili Zhai, Jingjing Zhang, Ting Zhang","doi":"10.4310/cms.2024.v22.n2.a10","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the perturbed Navier–Stokes system around the Landau solutions. Using the energy method and the continuation method, we show the global existence of the $L^2$ local energy solution for the perturbed Navier–Stokes system with the oscillation decay initial data $v_0 \\in E^2_{\\sigma} + L^3_{\\operatorname{uloc}} \\,$.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"122 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence of perturbed Navier–Stokes system around Landau solutions with slowly decaying oscillation\",\"authors\":\"Jiayan Wu, Cuili Zhai, Jingjing Zhang, Ting Zhang\",\"doi\":\"10.4310/cms.2024.v22.n2.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the perturbed Navier–Stokes system around the Landau solutions. Using the energy method and the continuation method, we show the global existence of the $L^2$ local energy solution for the perturbed Navier–Stokes system with the oscillation decay initial data $v_0 \\\\in E^2_{\\\\sigma} + L^3_{\\\\operatorname{uloc}} \\\\,$.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2024.v22.n2.a10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n2.a10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了围绕朗道解的扰动纳维-斯托克斯系统。利用能量法和延续法,我们证明了具有振荡衰减初始数据 $v_0 \in E^2_{\sigma} + L^3_{\operatorname{uloc}} 的扰动纳维-斯托克斯系统的 $L^2$ 局域能量解的全局存在性。\,$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence of perturbed Navier–Stokes system around Landau solutions with slowly decaying oscillation
In this paper, we consider the perturbed Navier–Stokes system around the Landau solutions. Using the energy method and the continuation method, we show the global existence of the $L^2$ local energy solution for the perturbed Navier–Stokes system with the oscillation decay initial data $v_0 \in E^2_{\sigma} + L^3_{\operatorname{uloc}} \,$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信