从动力学重建超图

Robin Delabays, Giulia De Pasquale, Florian Dörfler, Yuanzhao Zhang
{"title":"从动力学重建超图","authors":"Robin Delabays, Giulia De Pasquale, Florian Dörfler, Yuanzhao Zhang","doi":"arxiv-2402.00078","DOIUrl":null,"url":null,"abstract":"A plethora of methods have been developed in the past two decades to infer\nthe underlying network structure of an interconnected system from its\ncollective dynamics. However, methods capable of inferring nonpairwise\ninteractions are only starting to appear. Here, we develop an inference\nalgorithm based on sparse identification of nonlinear dynamics (SINDy) to\nreconstruct hypergraphs and simplicial complexes from time-series data. Our\nmodel-free method does not require information about node dynamics or coupling\nfunctions, making it applicable to complex systems that do not have reliable\nmathematical descriptions. We first benchmark the new method on synthetic data\ngenerated from Kuramoto and Lorenz dynamics. We then use it to infer the\neffective connectivity among seven brain regions from resting-state EEG data,\nwhich reveals significant contributions from non-pairwise interactions in\nshaping the macroscopic brain dynamics.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypergraph reconstruction from dynamics\",\"authors\":\"Robin Delabays, Giulia De Pasquale, Florian Dörfler, Yuanzhao Zhang\",\"doi\":\"arxiv-2402.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A plethora of methods have been developed in the past two decades to infer\\nthe underlying network structure of an interconnected system from its\\ncollective dynamics. However, methods capable of inferring nonpairwise\\ninteractions are only starting to appear. Here, we develop an inference\\nalgorithm based on sparse identification of nonlinear dynamics (SINDy) to\\nreconstruct hypergraphs and simplicial complexes from time-series data. Our\\nmodel-free method does not require information about node dynamics or coupling\\nfunctions, making it applicable to complex systems that do not have reliable\\nmathematical descriptions. We first benchmark the new method on synthetic data\\ngenerated from Kuramoto and Lorenz dynamics. We then use it to infer the\\neffective connectivity among seven brain regions from resting-state EEG data,\\nwhich reveals significant contributions from non-pairwise interactions in\\nshaping the macroscopic brain dynamics.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,人们开发了大量的方法来从互联系统的集体动力学推断其基本网络结构。然而,能够推断非成对交互作用的方法才刚刚开始出现。在这里,我们开发了一种基于非线性动力学稀疏识别(SINDy)的推理算法,从时间序列数据中重建超图和简单复合物。我们的无模型方法不需要节点动力学或耦合函数信息,因此适用于没有可靠数学描述的复杂系统。我们首先在由 Kuramoto 和 Lorenz 动力学生成的合成数据上对新方法进行了基准测试。然后,我们利用它从静息态脑电数据中推断出七个脑区之间的有效连接性,发现非成对相互作用在塑造宏观脑动力学方面做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypergraph reconstruction from dynamics
A plethora of methods have been developed in the past two decades to infer the underlying network structure of an interconnected system from its collective dynamics. However, methods capable of inferring nonpairwise interactions are only starting to appear. Here, we develop an inference algorithm based on sparse identification of nonlinear dynamics (SINDy) to reconstruct hypergraphs and simplicial complexes from time-series data. Our model-free method does not require information about node dynamics or coupling functions, making it applicable to complex systems that do not have reliable mathematical descriptions. We first benchmark the new method on synthetic data generated from Kuramoto and Lorenz dynamics. We then use it to infer the effective connectivity among seven brain regions from resting-state EEG data, which reveals significant contributions from non-pairwise interactions in shaping the macroscopic brain dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信