上的复双曲三角形群的极限集

IF 0.6 4区 数学 Q3 MATHEMATICS
MENGQI SHI, JIEYAN WANG
{"title":"上的复双曲三角形群的极限集","authors":"MENGQI SHI, JIEYAN WANG","doi":"10.1017/s0004972723001478","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline1.png\" /> <jats:tex-math> $\\Gamma =\\langle I_{1}, I_{2}, I_{3}\\rangle $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the complex hyperbolic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline2.png\" /> <jats:tex-math> $(4,4,\\infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangle group with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline3.png\" /> <jats:tex-math> $I_1I_3I_2I_3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> being unipotent. We show that the limit set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline4.png\" /> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is connected and the closure of a countable union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline5.png\" /> <jats:tex-math> $\\mathbb {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-circles.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"273 ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE LIMIT SET OF A COMPLEX HYPERBOLIC TRIANGLE GROUP\",\"authors\":\"MENGQI SHI, JIEYAN WANG\",\"doi\":\"10.1017/s0004972723001478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline1.png\\\" /> <jats:tex-math> $\\\\Gamma =\\\\langle I_{1}, I_{2}, I_{3}\\\\rangle $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the complex hyperbolic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline2.png\\\" /> <jats:tex-math> $(4,4,\\\\infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangle group with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline3.png\\\" /> <jats:tex-math> $I_1I_3I_2I_3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> being unipotent. We show that the limit set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline4.png\\\" /> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is connected and the closure of a countable union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline5.png\\\" /> <jats:tex-math> $\\\\mathbb {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-circles.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"273 \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001478\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001478","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $\Gamma =\langle I_{1}, I_{2}, I_{3}\rangle $ 是复双曲 $(4,4,\infty )$ 三角形群,其中 $I_1I_3I_2I_3$ 是单能的。我们证明了 $\Gamma $ 的极限集是连通的,并且是 $\mathbb {R}$ - 圆的可数联盟的闭合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE LIMIT SET OF A COMPLEX HYPERBOLIC TRIANGLE GROUP
Let $\Gamma =\langle I_{1}, I_{2}, I_{3}\rangle $ be the complex hyperbolic $(4,4,\infty )$ triangle group with $I_1I_3I_2I_3$ being unipotent. We show that the limit set of $\Gamma $ is connected and the closure of a countable union of $\mathbb {R}$ -circles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信