{"title":"上的复双曲三角形群的极限集","authors":"MENGQI SHI, JIEYAN WANG","doi":"10.1017/s0004972723001478","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline1.png\" /> <jats:tex-math> $\\Gamma =\\langle I_{1}, I_{2}, I_{3}\\rangle $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the complex hyperbolic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline2.png\" /> <jats:tex-math> $(4,4,\\infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangle group with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline3.png\" /> <jats:tex-math> $I_1I_3I_2I_3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> being unipotent. We show that the limit set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline4.png\" /> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is connected and the closure of a countable union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001478_inline5.png\" /> <jats:tex-math> $\\mathbb {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-circles.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"273 ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE LIMIT SET OF A COMPLEX HYPERBOLIC TRIANGLE GROUP\",\"authors\":\"MENGQI SHI, JIEYAN WANG\",\"doi\":\"10.1017/s0004972723001478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline1.png\\\" /> <jats:tex-math> $\\\\Gamma =\\\\langle I_{1}, I_{2}, I_{3}\\\\rangle $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be the complex hyperbolic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline2.png\\\" /> <jats:tex-math> $(4,4,\\\\infty )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> triangle group with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline3.png\\\" /> <jats:tex-math> $I_1I_3I_2I_3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> being unipotent. We show that the limit set of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline4.png\\\" /> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is connected and the closure of a countable union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0004972723001478_inline5.png\\\" /> <jats:tex-math> $\\\\mathbb {R}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-circles.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"273 \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723001478\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001478","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
ON THE LIMIT SET OF A COMPLEX HYPERBOLIC TRIANGLE GROUP
Let $\Gamma =\langle I_{1}, I_{2}, I_{3}\rangle $ be the complex hyperbolic $(4,4,\infty )$ triangle group with $I_1I_3I_2I_3$ being unipotent. We show that the limit set of $\Gamma $ is connected and the closure of a countable union of $\mathbb {R}$ -circles.
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society