Frederik Garbe, Jan Hladký, Gábor Kun, Kristýna Pekárková
{"title":"关于规避模式的 permutons","authors":"Frederik Garbe, Jan Hladký, Gábor Kun, Kristýna Pekárková","doi":"10.1002/rsa.21208","DOIUrl":null,"url":null,"abstract":"The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order <math altimg=\"urn:x-wiley:rsa:media:rsa21208:rsa21208-math-0001\" display=\"inline\" location=\"graphic/rsa21208-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>k</mi>\n</mrow>\n$$ k $$</annotation>\n</semantics></math> have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most <math altimg=\"urn:x-wiley:rsa:media:rsa21208:rsa21208-math-0002\" display=\"inline\" location=\"graphic/rsa21208-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mi>k</mi>\n<mo form=\"prefix\">−</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ \\left(k-1\\right) $$</annotation>\n</semantics></math> many, and this bound is sharp. We use this to give a simple proof of the “permutation removal lemma.”","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pattern-avoiding permutons\",\"authors\":\"Frederik Garbe, Jan Hladký, Gábor Kun, Kristýna Pekárková\",\"doi\":\"10.1002/rsa.21208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order <math altimg=\\\"urn:x-wiley:rsa:media:rsa21208:rsa21208-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21208-math-0001.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>k</mi>\\n</mrow>\\n$$ k $$</annotation>\\n</semantics></math> have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most <math altimg=\\\"urn:x-wiley:rsa:media:rsa21208:rsa21208-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21208-math-0002.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mo stretchy=\\\"false\\\">(</mo>\\n<mi>k</mi>\\n<mo form=\\\"prefix\\\">−</mo>\\n<mn>1</mn>\\n<mo stretchy=\\\"false\\\">)</mo>\\n</mrow>\\n$$ \\\\left(k-1\\\\right) $$</annotation>\\n</semantics></math> many, and this bound is sharp. We use this to give a simple proof of the “permutation removal lemma.”\",\"PeriodicalId\":20948,\"journal\":{\"name\":\"Random Structures and Algorithms\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
排列极限理论引出了称为 permutons 的极限对象,它们是单位平方上的某些博尔量。我们证明,避开阶数 k$$ k $$ 的给定置换的置换子具有特别简单的结构。也就是说,几乎每条分解 permuton 的纤维(比如说,沿着 x 轴)都只由原子组成,最多只有 (k-1)$$ \left(k-1\right) $$ 个,而且这个约束是尖锐的。我们利用这一点给出了 "包络去除稃证 "的简单证明。
The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most many, and this bound is sharp. We use this to give a simple proof of the “permutation removal lemma.”