STNMDA:利用结构感知变压器预测潜在微生物与药物关联的新型模型

IF 2.4 3区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Liu Fan, Xiaoyu Yang, Lei Wang, Xianyou Zhu
{"title":"STNMDA:利用结构感知变压器预测潜在微生物与药物关联的新型模型","authors":"Liu Fan, Xiaoyu Yang, Lei Wang, Xianyou Zhu","doi":"10.2174/0115748936272939231212102627","DOIUrl":null,"url":null,"abstract":"Introduction: Microbes are intimately involved in the physiological and pathological processes of numerous diseases. There is a critical need for new drugs to combat microbe-induced diseases in clinical settings. Predicting potential microbe-drug associations is, therefore, essential for both disease treatment and novel drug discovery. However, it is costly and time-consuming to verify these relationships through traditional wet lab approaches. Methods: We proposed an efficient computational model, STNMDA, that integrated a StructureAware Transformer (SAT) with a Deep Neural Network (DNN) classifier to infer latent microbedrug associations. The STNMDA began with a “random walk with a restart” approach to construct a heterogeneous network using Gaussian kernel similarity and functional similarity measures for microorganisms and drugs. This heterogeneous network was then fed into the SAT to extract attribute features and graph structures for each drug and microbe node. Finally, the DNN classifier calculated the probability of associations between microbes and drugs. Results: Extensive experimental results showed that STNMDA surpassed existing state-of-the-art models in performance on the MDAD and aBiofilm databases. In addition, the feasibility of STNMDA in confirming associations between microbes and drugs was demonstrated through case validations. Conclusion: Hence, STNMDA showed promise as a valuable tool for future prediction of microbedrug associations.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STNMDA: A Novel Model for Predicting Potential Microbe-Drug Associations with Structure-Aware Transformer\",\"authors\":\"Liu Fan, Xiaoyu Yang, Lei Wang, Xianyou Zhu\",\"doi\":\"10.2174/0115748936272939231212102627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Microbes are intimately involved in the physiological and pathological processes of numerous diseases. There is a critical need for new drugs to combat microbe-induced diseases in clinical settings. Predicting potential microbe-drug associations is, therefore, essential for both disease treatment and novel drug discovery. However, it is costly and time-consuming to verify these relationships through traditional wet lab approaches. Methods: We proposed an efficient computational model, STNMDA, that integrated a StructureAware Transformer (SAT) with a Deep Neural Network (DNN) classifier to infer latent microbedrug associations. The STNMDA began with a “random walk with a restart” approach to construct a heterogeneous network using Gaussian kernel similarity and functional similarity measures for microorganisms and drugs. This heterogeneous network was then fed into the SAT to extract attribute features and graph structures for each drug and microbe node. Finally, the DNN classifier calculated the probability of associations between microbes and drugs. Results: Extensive experimental results showed that STNMDA surpassed existing state-of-the-art models in performance on the MDAD and aBiofilm databases. In addition, the feasibility of STNMDA in confirming associations between microbes and drugs was demonstrated through case validations. Conclusion: Hence, STNMDA showed promise as a valuable tool for future prediction of microbedrug associations.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936272939231212102627\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936272939231212102627","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

导言:微生物与许多疾病的生理和病理过程密切相关。临床上迫切需要新药来防治微生物引起的疾病。因此,预测潜在的微生物-药物关联对于疾病治疗和新药发现都至关重要。然而,通过传统的湿实验室方法来验证这些关系既费钱又费时。方法:我们提出了一种高效的计算模型 STNMDA,它集成了结构感知转换器(SAT)和深度神经网络(DNN)分类器,用于推断潜在的微生物药物关联。STNMDA 首先采用 "重启随机漫步 "方法,利用微生物和药物的高斯核相似性和功能相似性度量构建异构网络。然后将该异构网络输入 SAT,以提取每个药物和微生物节点的属性特征和图结构。最后,DNN 分类器计算微生物与药物之间的关联概率。结果广泛的实验结果表明,STNMDA 在 MDAD 和 aBiofilm 数据库上的性能超过了现有的最先进模型。此外,通过案例验证,证明了 STNMDA 在确认微生物与药物之间关联方面的可行性。结论因此,STNMDA有望成为未来预测微生物与药物关联的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STNMDA: A Novel Model for Predicting Potential Microbe-Drug Associations with Structure-Aware Transformer
Introduction: Microbes are intimately involved in the physiological and pathological processes of numerous diseases. There is a critical need for new drugs to combat microbe-induced diseases in clinical settings. Predicting potential microbe-drug associations is, therefore, essential for both disease treatment and novel drug discovery. However, it is costly and time-consuming to verify these relationships through traditional wet lab approaches. Methods: We proposed an efficient computational model, STNMDA, that integrated a StructureAware Transformer (SAT) with a Deep Neural Network (DNN) classifier to infer latent microbedrug associations. The STNMDA began with a “random walk with a restart” approach to construct a heterogeneous network using Gaussian kernel similarity and functional similarity measures for microorganisms and drugs. This heterogeneous network was then fed into the SAT to extract attribute features and graph structures for each drug and microbe node. Finally, the DNN classifier calculated the probability of associations between microbes and drugs. Results: Extensive experimental results showed that STNMDA surpassed existing state-of-the-art models in performance on the MDAD and aBiofilm databases. In addition, the feasibility of STNMDA in confirming associations between microbes and drugs was demonstrated through case validations. Conclusion: Hence, STNMDA showed promise as a valuable tool for future prediction of microbedrug associations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Bioinformatics
Current Bioinformatics 生物-生化研究方法
CiteScore
6.60
自引率
2.50%
发文量
77
审稿时长
>12 weeks
期刊介绍: Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science. The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信