高度非线性浅水方程:局部良好拟合、破浪数据和不存在 sech $^$2$ 解决方案

Bashar Khorbatly
{"title":"高度非线性浅水方程:局部良好拟合、破浪数据和不存在 sech $^$2$ 解决方案","authors":"Bashar Khorbatly","doi":"10.1007/s00605-024-01945-3","DOIUrl":null,"url":null,"abstract":"<p>In the context of the initial data and an amplitude parameter <span>\\(\\varepsilon \\)</span>, we establish a local existence result for a highly nonlinear shallow water equation on the real line. This result holds in the space <span>\\(H^k\\)</span> as long as <span>\\(k&gt;5/2\\)</span>. Additionally, we illustrate that the threshold time for the occurrence of wave breaking in the surging type is on the order of <span>\\(\\varepsilon ^{-1},\\)</span> while plunging breakers do not manifest. Lastly, in accordance with ODE theory, it is demonstrated that there are no exact solitary wave solutions in the form of <i>sech</i> and <span>\\(sech^2\\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The highly nonlinear shallow water equation: local well-posedness, wave breaking data and non-existence of sech $$^2$$ solutions\",\"authors\":\"Bashar Khorbatly\",\"doi\":\"10.1007/s00605-024-01945-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of the initial data and an amplitude parameter <span>\\\\(\\\\varepsilon \\\\)</span>, we establish a local existence result for a highly nonlinear shallow water equation on the real line. This result holds in the space <span>\\\\(H^k\\\\)</span> as long as <span>\\\\(k&gt;5/2\\\\)</span>. Additionally, we illustrate that the threshold time for the occurrence of wave breaking in the surging type is on the order of <span>\\\\(\\\\varepsilon ^{-1},\\\\)</span> while plunging breakers do not manifest. Lastly, in accordance with ODE theory, it is demonstrated that there are no exact solitary wave solutions in the form of <i>sech</i> and <span>\\\\(sech^2\\\\)</span>.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-01945-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01945-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在初始数据和振幅参数 \(\varepsilon \)的背景下,我们建立了实线上高度非线性浅水方程的局部存在性结果。只要 \(k>5/2\),这个结果在空间 \(H^k\)中就成立。此外,我们还说明了涌浪型破浪发生的阈值时间在 \(\varepsilon ^{-1},\) 的数量级上,而跌落型破浪不会出现。最后,根据 ODE 理论,我们证明不存在 sech 和 \(sech^2\) 形式的精确孤波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The highly nonlinear shallow water equation: local well-posedness, wave breaking data and non-existence of sech $$^2$$ solutions

In the context of the initial data and an amplitude parameter \(\varepsilon \), we establish a local existence result for a highly nonlinear shallow water equation on the real line. This result holds in the space \(H^k\) as long as \(k>5/2\). Additionally, we illustrate that the threshold time for the occurrence of wave breaking in the surging type is on the order of \(\varepsilon ^{-1},\) while plunging breakers do not manifest. Lastly, in accordance with ODE theory, it is demonstrated that there are no exact solitary wave solutions in the form of sech and \(sech^2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信