{"title":"具有地形起伏和不规则海床的复合粘弹性介质的广义时域速度应力地震波方程","authors":"Chao Jin, Bing Zhou, Mohamed Kamel Riahi, Mohamed Jamal Zemerly","doi":"10.1007/s10596-024-10273-2","DOIUrl":null,"url":null,"abstract":"<p>Accurate seismic wave modeling of viscoelastic anisotropic medium is a fundamental tool for seismic data processing, interpretation and full waveform inversion. Also, free water surface, topographic relief and irregular seabed are often encountered in practical seismic surveys. Thus, basing on the General Maxwell Body, we proposed a generalized matrix form of the velocity-stress seismic wave equation, which becomes valid for composite viscoelastic anisotropic media and satisfies the boundary conditions in presence of topographic free surfaces and irregular fluid–solid interfaces. We theoretically show that the viscoelastic effect of a medium may be considered as the intrinsic body sources accumulated in wavefield history and computed by a recursive convolution formula accurately and efficiently. We also demonstrated that such a generalized viscoelastic wave equation may be solved with the curvilinear MacCormack finite difference method and validated the accuracy and feasibility of the proposed method. The modeling results in homogeneous and heterogeneous media match well with the analytical solutions and the references yielded by the spectral element solutions.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized time-domain velocity-stress seismic wave equation for composite viscoelastic media with a topographic relief and an irregular seabed\",\"authors\":\"Chao Jin, Bing Zhou, Mohamed Kamel Riahi, Mohamed Jamal Zemerly\",\"doi\":\"10.1007/s10596-024-10273-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate seismic wave modeling of viscoelastic anisotropic medium is a fundamental tool for seismic data processing, interpretation and full waveform inversion. Also, free water surface, topographic relief and irregular seabed are often encountered in practical seismic surveys. Thus, basing on the General Maxwell Body, we proposed a generalized matrix form of the velocity-stress seismic wave equation, which becomes valid for composite viscoelastic anisotropic media and satisfies the boundary conditions in presence of topographic free surfaces and irregular fluid–solid interfaces. We theoretically show that the viscoelastic effect of a medium may be considered as the intrinsic body sources accumulated in wavefield history and computed by a recursive convolution formula accurately and efficiently. We also demonstrated that such a generalized viscoelastic wave equation may be solved with the curvilinear MacCormack finite difference method and validated the accuracy and feasibility of the proposed method. The modeling results in homogeneous and heterogeneous media match well with the analytical solutions and the references yielded by the spectral element solutions.</p>\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-024-10273-2\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10273-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A generalized time-domain velocity-stress seismic wave equation for composite viscoelastic media with a topographic relief and an irregular seabed
Accurate seismic wave modeling of viscoelastic anisotropic medium is a fundamental tool for seismic data processing, interpretation and full waveform inversion. Also, free water surface, topographic relief and irregular seabed are often encountered in practical seismic surveys. Thus, basing on the General Maxwell Body, we proposed a generalized matrix form of the velocity-stress seismic wave equation, which becomes valid for composite viscoelastic anisotropic media and satisfies the boundary conditions in presence of topographic free surfaces and irregular fluid–solid interfaces. We theoretically show that the viscoelastic effect of a medium may be considered as the intrinsic body sources accumulated in wavefield history and computed by a recursive convolution formula accurately and efficiently. We also demonstrated that such a generalized viscoelastic wave equation may be solved with the curvilinear MacCormack finite difference method and validated the accuracy and feasibility of the proposed method. The modeling results in homogeneous and heterogeneous media match well with the analytical solutions and the references yielded by the spectral element solutions.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.