{"title":"具有多驼峰衰变势的非自相加狄拉克算子的半经典 WKB 问题","authors":"Nicholas Hatzizisis, Spyridon Kamvissis","doi":"10.3233/asy-231885","DOIUrl":null,"url":null,"abstract":"In this paper we study the semiclassical behavior of the scattering data of a non-self-adjoint Dirac operator with a real, positive, multi-humped, fairly smooth but not necessarily analytic potential decaying at infinity. We provide the rigorous semiclassical analysis of the Bohr-Sommerfeld condition for the location of the eigenvalues, the norming constants, and the reflection coefficient.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"27 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiclassical WKB problem for the non-self-adjoint Dirac operator with a multi-humped decaying potential\",\"authors\":\"Nicholas Hatzizisis, Spyridon Kamvissis\",\"doi\":\"10.3233/asy-231885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the semiclassical behavior of the scattering data of a non-self-adjoint Dirac operator with a real, positive, multi-humped, fairly smooth but not necessarily analytic potential decaying at infinity. We provide the rigorous semiclassical analysis of the Bohr-Sommerfeld condition for the location of the eigenvalues, the norming constants, and the reflection coefficient.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231885\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231885","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Semiclassical WKB problem for the non-self-adjoint Dirac operator with a multi-humped decaying potential
In this paper we study the semiclassical behavior of the scattering data of a non-self-adjoint Dirac operator with a real, positive, multi-humped, fairly smooth but not necessarily analytic potential decaying at infinity. We provide the rigorous semiclassical analysis of the Bohr-Sommerfeld condition for the location of the eigenvalues, the norming constants, and the reflection coefficient.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.