$$\mathcal {S}$ -交换量子顶点代数和贝特子代数的扬琴变形

Pub Date : 2024-02-02 DOI:10.1007/s00031-023-09837-w
{"title":"$$\\mathcal {S}$ -交换量子顶点代数和贝特子代数的扬琴变形","authors":"","doi":"10.1007/s00031-023-09837-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We construct a new class of quantum vertex algebras associated with the normalized Yang <em>R</em>-matrix. They are obtained as Yangian deformations of certain <span> <span>\\(\\mathcal {S}\\)</span> </span>-commutative quantum vertex algebras, and their <span> <span>\\(\\mathcal {S}\\)</span> </span>-locality takes the form of a single <em>RTT</em>-relation. We establish some preliminary results on their representation theory and then further investigate their braiding map. In particular, we show that its fixed points are closely related with Bethe subalgebras in the Yangian quantization of the Poisson algebra <span> <span>\\(\\mathcal {O}(\\mathfrak {gl}_N((z^{-1})))\\)</span> </span>, which were recently introduced by Krylov and Rybnikov. Finally, we extend this construction of commutative families to the case of trigonometric <em>R</em>-matrix of type <em>A</em>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yangian Deformations of $$\\\\mathcal {S}$$ -Commutative Quantum Vertex Algebras and Bethe Subalgebras\",\"authors\":\"\",\"doi\":\"10.1007/s00031-023-09837-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We construct a new class of quantum vertex algebras associated with the normalized Yang <em>R</em>-matrix. They are obtained as Yangian deformations of certain <span> <span>\\\\(\\\\mathcal {S}\\\\)</span> </span>-commutative quantum vertex algebras, and their <span> <span>\\\\(\\\\mathcal {S}\\\\)</span> </span>-locality takes the form of a single <em>RTT</em>-relation. We establish some preliminary results on their representation theory and then further investigate their braiding map. In particular, we show that its fixed points are closely related with Bethe subalgebras in the Yangian quantization of the Poisson algebra <span> <span>\\\\(\\\\mathcal {O}(\\\\mathfrak {gl}_N((z^{-1})))\\\\)</span> </span>, which were recently introduced by Krylov and Rybnikov. Finally, we extend this construction of commutative families to the case of trigonometric <em>R</em>-matrix of type <em>A</em>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-023-09837-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09837-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们构建了一类新的与归一化杨 R 矩阵相关的量子顶点代数。它们是作为某些 \(\mathcal {S}\) -交换量子顶点代数的杨式变形而得到的,它们的 \(\mathcal {S}\) -局域性采用了单一的 RTT 关系形式。我们建立了关于它们的表示理论的一些初步结果,然后进一步研究了它们的编织图。特别是,我们证明了它的定点与泊松代数扬琴量子化中的 Bethe 子代数密切相关(\mathcal {O}(\mathfrak {gl}_N((z^{-1}))\)是克雷洛夫和雷布尼科夫最近引入的。最后,我们将换元族的构造扩展到 A 型三角 R 矩阵的情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Yangian Deformations of $$\mathcal {S}$$ -Commutative Quantum Vertex Algebras and Bethe Subalgebras

Abstract

We construct a new class of quantum vertex algebras associated with the normalized Yang R-matrix. They are obtained as Yangian deformations of certain \(\mathcal {S}\) -commutative quantum vertex algebras, and their \(\mathcal {S}\) -locality takes the form of a single RTT-relation. We establish some preliminary results on their representation theory and then further investigate their braiding map. In particular, we show that its fixed points are closely related with Bethe subalgebras in the Yangian quantization of the Poisson algebra \(\mathcal {O}(\mathfrak {gl}_N((z^{-1})))\) , which were recently introduced by Krylov and Rybnikov. Finally, we extend this construction of commutative families to the case of trigonometric R-matrix of type A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信