{"title":"霍恩德斯基引力中的厚枝蔓","authors":"Fabiano F. Santos, F. A. Brito","doi":"10.1155/2024/5402411","DOIUrl":null,"url":null,"abstract":"We investigate thick brane solutions in the Horndeski gravity. In this setup, we found analytical solutions, applying the first-order formalism to two scalar fields where the first field comes from the nonminimal scalar-tensor coupling and the second is due to the matter contribution sector. With these analytical solutions, we evaluate the symmetric thick brane solutions in Horndeski gravity with four-dimensional geometry. In such a setup, we evaluate the gravity fluctuations to find “almost massless modes,” for any values of the Horndeski parameters. These modes were used to compute the corrections to the Newtonian potential and evaluate the limit four-dimensional gravity.","PeriodicalId":7498,"journal":{"name":"Advances in High Energy Physics","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thick Branes in Horndeski Gravity\",\"authors\":\"Fabiano F. Santos, F. A. Brito\",\"doi\":\"10.1155/2024/5402411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate thick brane solutions in the Horndeski gravity. In this setup, we found analytical solutions, applying the first-order formalism to two scalar fields where the first field comes from the nonminimal scalar-tensor coupling and the second is due to the matter contribution sector. With these analytical solutions, we evaluate the symmetric thick brane solutions in Horndeski gravity with four-dimensional geometry. In such a setup, we evaluate the gravity fluctuations to find “almost massless modes,” for any values of the Horndeski parameters. These modes were used to compute the corrections to the Newtonian potential and evaluate the limit four-dimensional gravity.\",\"PeriodicalId\":7498,\"journal\":{\"name\":\"Advances in High Energy Physics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5402411\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/5402411","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
We investigate thick brane solutions in the Horndeski gravity. In this setup, we found analytical solutions, applying the first-order formalism to two scalar fields where the first field comes from the nonminimal scalar-tensor coupling and the second is due to the matter contribution sector. With these analytical solutions, we evaluate the symmetric thick brane solutions in Horndeski gravity with four-dimensional geometry. In such a setup, we evaluate the gravity fluctuations to find “almost massless modes,” for any values of the Horndeski parameters. These modes were used to compute the corrections to the Newtonian potential and evaluate the limit four-dimensional gravity.
期刊介绍:
Advances in High Energy Physics publishes the results of theoretical and experimental research on the nature of, and interaction between, energy and matter. Considering both original research and focussed review articles, the journal welcomes submissions from small research groups and large consortia alike.