法向极值为轨道的均质子黎曼曼体

Pub Date : 2024-02-01 DOI:10.1007/s00031-024-09844-5
Zaili Yan, Huihui An, Shaoqiang Deng
{"title":"法向极值为轨道的均质子黎曼曼体","authors":"Zaili Yan, Huihui An, Shaoqiang Deng","doi":"10.1007/s00031-024-09844-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study homogeneous sub-Riemannian manifolds whose normal extremals are the orbits of one-parameter subgroups of the group of smooth isometries (abbreviated as sub-Riemannian geodesic orbit manifolds). Following Tóth’s approach, we first obtain a sufficient and necessary condition for a homogeneous sub-Riemannian manifold to be geodesic orbit. Secondly, we study left-invariant sub-Riemannian geodesic orbit metrics on connected and simply connected nilpotent Lie groups. It turns out that every sub-Riemannian geodesic orbit nilmanifold is the restriction of a Riemannian geodesic orbit nilmanifold. Thirdly, we provide a method to construct compact and non-compact sub-Riemannian geodesic orbit manifolds and present a large number of sub-Riemannian geodesic orbit manifolds from Tamaru’s classification of Riemannian geodesic orbit manifolds fibered over irreducible symmetric spaces. Finally, we give a complete description of sub-Riemannian geodesic orbit metrics on spheres, and show that many of sub-Riemannian geodesic orbit manifolds have no abnormal sub-Riemannian geodesics.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous Sub-Riemannian Manifolds Whose Normal Extremals are Orbits\",\"authors\":\"Zaili Yan, Huihui An, Shaoqiang Deng\",\"doi\":\"10.1007/s00031-024-09844-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study homogeneous sub-Riemannian manifolds whose normal extremals are the orbits of one-parameter subgroups of the group of smooth isometries (abbreviated as sub-Riemannian geodesic orbit manifolds). Following Tóth’s approach, we first obtain a sufficient and necessary condition for a homogeneous sub-Riemannian manifold to be geodesic orbit. Secondly, we study left-invariant sub-Riemannian geodesic orbit metrics on connected and simply connected nilpotent Lie groups. It turns out that every sub-Riemannian geodesic orbit nilmanifold is the restriction of a Riemannian geodesic orbit nilmanifold. Thirdly, we provide a method to construct compact and non-compact sub-Riemannian geodesic orbit manifolds and present a large number of sub-Riemannian geodesic orbit manifolds from Tamaru’s classification of Riemannian geodesic orbit manifolds fibered over irreducible symmetric spaces. Finally, we give a complete description of sub-Riemannian geodesic orbit metrics on spheres, and show that many of sub-Riemannian geodesic orbit manifolds have no abnormal sub-Riemannian geodesics.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09844-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09844-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的均质子黎曼流形的法极值是光滑等距群的单参数子群的轨道(简称为子黎曼大地轨道流形)。按照托特的方法,我们首先得到了均质子黎曼流形是大地轨道的充分必要条件。其次,我们研究了连通和简单连通的零势李群上的左不变亚黎曼大地轨道流形。结果发现,每一个亚黎曼大地轨道无芒点都是黎曼大地轨道无芒点的限制。第三,我们提供了一种构造紧凑和非紧凑亚黎曼大地轨道流形的方法,并从 Tamaru 对不可还原对称空间上纤维化的黎曼大地轨道流形的分类中提出了大量亚黎曼大地轨道流形。最后,我们完整地描述了球面上的亚黎曼大地轨道流形,并证明许多亚黎曼大地轨道流形没有异常的亚黎曼大地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homogeneous Sub-Riemannian Manifolds Whose Normal Extremals are Orbits

In this paper, we study homogeneous sub-Riemannian manifolds whose normal extremals are the orbits of one-parameter subgroups of the group of smooth isometries (abbreviated as sub-Riemannian geodesic orbit manifolds). Following Tóth’s approach, we first obtain a sufficient and necessary condition for a homogeneous sub-Riemannian manifold to be geodesic orbit. Secondly, we study left-invariant sub-Riemannian geodesic orbit metrics on connected and simply connected nilpotent Lie groups. It turns out that every sub-Riemannian geodesic orbit nilmanifold is the restriction of a Riemannian geodesic orbit nilmanifold. Thirdly, we provide a method to construct compact and non-compact sub-Riemannian geodesic orbit manifolds and present a large number of sub-Riemannian geodesic orbit manifolds from Tamaru’s classification of Riemannian geodesic orbit manifolds fibered over irreducible symmetric spaces. Finally, we give a complete description of sub-Riemannian geodesic orbit metrics on spheres, and show that many of sub-Riemannian geodesic orbit manifolds have no abnormal sub-Riemannian geodesics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信