{"title":"种群熵最大值的几何解释","authors":"Igor Lazov, Petar Lazov","doi":"10.1080/15326349.2023.2297959","DOIUrl":null,"url":null,"abstract":"We consider a population of finite size M, where the current number N of entities, N∈{0,1,2,…,M}, determines its states. We geometrically analyze the amounts of information iN and iM−N, carried by ...","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrical interpretation of the population entropy maximum\",\"authors\":\"Igor Lazov, Petar Lazov\",\"doi\":\"10.1080/15326349.2023.2297959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a population of finite size M, where the current number N of entities, N∈{0,1,2,…,M}, determines its states. We geometrically analyze the amounts of information iN and iM−N, carried by ...\",\"PeriodicalId\":21970,\"journal\":{\"name\":\"Stochastic Models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2023.2297959\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2023.2297959","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑一个有限大小为 M 的群体,当前实体的数量 N(N∈{0,1,2,...,M})决定了它的状态。我们从几何学角度分析了 N 和 iM-N 所携带的信息量。
Geometrical interpretation of the population entropy maximum
We consider a population of finite size M, where the current number N of entities, N∈{0,1,2,…,M}, determines its states. We geometrically analyze the amounts of information iN and iM−N, carried by ...
期刊介绍:
Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.