剥离序列

Pub Date : 2024-02-02 DOI:10.1007/s00454-023-00616-8
Adrian Dumitrescu, Géza Tóth
{"title":"剥离序列","authors":"Adrian Dumitrescu, Géza Tóth","doi":"10.1007/s00454-023-00616-8","DOIUrl":null,"url":null,"abstract":"<p>Given a set of <i>n</i> labeled points in general position in the plane, we remove all of its points one by one. At each step, one point from the convex hull of the remaining set is erased. In how many ways can the process be carried out? The answer obviously depends on the point set. If the points are in convex position, there are exactly <i>n</i>! ways, which is the maximum number of ways for <i>n</i> points. But what is the minimum number? It is shown that this number is (roughly) at least <span>\\(3^n\\)</span> and at most <span>\\(12.29^n\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peeling Sequences\",\"authors\":\"Adrian Dumitrescu, Géza Tóth\",\"doi\":\"10.1007/s00454-023-00616-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a set of <i>n</i> labeled points in general position in the plane, we remove all of its points one by one. At each step, one point from the convex hull of the remaining set is erased. In how many ways can the process be carried out? The answer obviously depends on the point set. If the points are in convex position, there are exactly <i>n</i>! ways, which is the maximum number of ways for <i>n</i> points. But what is the minimum number? It is shown that this number is (roughly) at least <span>\\\\(3^n\\\\)</span> and at most <span>\\\\(12.29^n\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00616-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00616-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定平面内一般位置的 n 个标记点集合,我们逐个删除其所有点。每移去一个点,就会从剩余集合的凸壳中移除一个点。这个过程有多少种方式?答案显然取决于点集。如果点都在凸面位置,那么正好有 n 种方法,这是 n 个点的最大方法数。那么最小的路数是多少呢?结果表明,这个数目(大致)至少是(3^n\),最多是(12.29^n\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Peeling Sequences

分享
查看原文
Peeling Sequences

Given a set of n labeled points in general position in the plane, we remove all of its points one by one. At each step, one point from the convex hull of the remaining set is erased. In how many ways can the process be carried out? The answer obviously depends on the point set. If the points are in convex position, there are exactly n! ways, which is the maximum number of ways for n points. But what is the minimum number? It is shown that this number is (roughly) at least \(3^n\) and at most \(12.29^n\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信