幂律滑移边界条件下斯托克斯方程的非连续伽勒金方法:先验分析

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2024-02-01 DOI:10.1007/s10092-023-00563-z
Djoko Kamdem Jules, Gidey Hagos, Koko Jonas, Sayah Toni
{"title":"幂律滑移边界条件下斯托克斯方程的非连续伽勒金方法:先验分析","authors":"Djoko Kamdem Jules, Gidey Hagos, Koko Jonas, Sayah Toni","doi":"10.1007/s10092-023-00563-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, three discontinuous Galerkin (DG) methods are formulated and analysed to solve Stokes equations with power law slip boundary condition. Numerical examples exhibited confirm the theoretical findings, moreover we also test the methods on the lid Driven cavity and compare the three DG methods.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"3 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: a priori analysis\",\"authors\":\"Djoko Kamdem Jules, Gidey Hagos, Koko Jonas, Sayah Toni\",\"doi\":\"10.1007/s10092-023-00563-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, three discontinuous Galerkin (DG) methods are formulated and analysed to solve Stokes equations with power law slip boundary condition. Numerical examples exhibited confirm the theoretical findings, moreover we also test the methods on the lid Driven cavity and compare the three DG methods.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-023-00563-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00563-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出并分析了三种非连续伽勒金(DG)方法,用于求解具有幂律滑移边界条件的斯托克斯方程。所展示的数值示例证实了理论结论,此外,我们还在顶盖驱动空腔上测试了这些方法,并对三种 DG 方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: a priori analysis

Discontinuous Galerkin methods for Stokes equations under power law slip boundary condition: a priori analysis

In this work, three discontinuous Galerkin (DG) methods are formulated and analysed to solve Stokes equations with power law slip boundary condition. Numerical examples exhibited confirm the theoretical findings, moreover we also test the methods on the lid Driven cavity and compare the three DG methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信