用于研究组合斜拉桥剪力滞后的理论模型

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL
Wenting Zhang, Lan Duan, Chunsheng Wang, Weihua Ren
{"title":"用于研究组合斜拉桥剪力滞后的理论模型","authors":"Wenting Zhang, Lan Duan, Chunsheng Wang, Weihua Ren","doi":"10.1007/s11709-023-0995-5","DOIUrl":null,"url":null,"abstract":"<p>The slab of the composite girder is usually very wide in composite cable-stayed bridges, and the main girder has an obvious shear lag. There is an axial force in the main girder due to cable forces, which changes the normal stress distribution of the composite girder and affects the shear lag. To investigate the shear lag in the twin I-shaped composite girder (TICG) of cable-stayed bridges, analytical solutions of TICGs under bending moment and axial force were derived by introducing the additional deflection into the longitudinal displacement function. A shear lag coefficient calculation method of the TICG based on additional deflection was proposed. Experiments with three load cases were conducted to simulate the main girder in cable-stayed bridges. And the stress, deflection, and shear lag coefficient obtained from the theoretical method considering additional deflection (TMAD) were verified by the experimental and finite element results. A generalized verification of a composite girder from existing references was made, indicating that the proposed method could provide more accurate results for the shear lag effect.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"51 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical model for investigating shear lag in composite cable-stayed bridges\",\"authors\":\"Wenting Zhang, Lan Duan, Chunsheng Wang, Weihua Ren\",\"doi\":\"10.1007/s11709-023-0995-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The slab of the composite girder is usually very wide in composite cable-stayed bridges, and the main girder has an obvious shear lag. There is an axial force in the main girder due to cable forces, which changes the normal stress distribution of the composite girder and affects the shear lag. To investigate the shear lag in the twin I-shaped composite girder (TICG) of cable-stayed bridges, analytical solutions of TICGs under bending moment and axial force were derived by introducing the additional deflection into the longitudinal displacement function. A shear lag coefficient calculation method of the TICG based on additional deflection was proposed. Experiments with three load cases were conducted to simulate the main girder in cable-stayed bridges. And the stress, deflection, and shear lag coefficient obtained from the theoretical method considering additional deflection (TMAD) were verified by the experimental and finite element results. A generalized verification of a composite girder from existing references was made, indicating that the proposed method could provide more accurate results for the shear lag effect.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-023-0995-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-023-0995-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

在斜拉组合桥中,组合梁的板面通常很宽,主梁有明显的剪力滞后。由于拉索力的作用,主梁中存在轴向力,改变了复合梁的法向应力分布,影响了剪力滞后。为了研究斜拉桥双工字形复合梁(TICG)的剪力滞后问题,通过在纵向位移函数中引入附加挠度,得出了 TICG 在弯矩和轴力作用下的解析解。提出了基于附加挠度的 TICG 剪力滞后系数计算方法。对斜拉桥主梁进行了三种荷载情况下的模拟实验。实验和有限元结果验证了考虑附加挠度(TMAD)的理论方法得出的应力、挠度和剪力滞后系数。对现有参考文献中的复合梁进行了归纳验证,表明所提出的方法可以提供更精确的剪力滞后效应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theoretical model for investigating shear lag in composite cable-stayed bridges

The slab of the composite girder is usually very wide in composite cable-stayed bridges, and the main girder has an obvious shear lag. There is an axial force in the main girder due to cable forces, which changes the normal stress distribution of the composite girder and affects the shear lag. To investigate the shear lag in the twin I-shaped composite girder (TICG) of cable-stayed bridges, analytical solutions of TICGs under bending moment and axial force were derived by introducing the additional deflection into the longitudinal displacement function. A shear lag coefficient calculation method of the TICG based on additional deflection was proposed. Experiments with three load cases were conducted to simulate the main girder in cable-stayed bridges. And the stress, deflection, and shear lag coefficient obtained from the theoretical method considering additional deflection (TMAD) were verified by the experimental and finite element results. A generalized verification of a composite girder from existing references was made, indicating that the proposed method could provide more accurate results for the shear lag effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信