Wenting Zhang, Lan Duan, Chunsheng Wang, Weihua Ren
{"title":"用于研究组合斜拉桥剪力滞后的理论模型","authors":"Wenting Zhang, Lan Duan, Chunsheng Wang, Weihua Ren","doi":"10.1007/s11709-023-0995-5","DOIUrl":null,"url":null,"abstract":"<p>The slab of the composite girder is usually very wide in composite cable-stayed bridges, and the main girder has an obvious shear lag. There is an axial force in the main girder due to cable forces, which changes the normal stress distribution of the composite girder and affects the shear lag. To investigate the shear lag in the twin I-shaped composite girder (TICG) of cable-stayed bridges, analytical solutions of TICGs under bending moment and axial force were derived by introducing the additional deflection into the longitudinal displacement function. A shear lag coefficient calculation method of the TICG based on additional deflection was proposed. Experiments with three load cases were conducted to simulate the main girder in cable-stayed bridges. And the stress, deflection, and shear lag coefficient obtained from the theoretical method considering additional deflection (TMAD) were verified by the experimental and finite element results. A generalized verification of a composite girder from existing references was made, indicating that the proposed method could provide more accurate results for the shear lag effect.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"51 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical model for investigating shear lag in composite cable-stayed bridges\",\"authors\":\"Wenting Zhang, Lan Duan, Chunsheng Wang, Weihua Ren\",\"doi\":\"10.1007/s11709-023-0995-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The slab of the composite girder is usually very wide in composite cable-stayed bridges, and the main girder has an obvious shear lag. There is an axial force in the main girder due to cable forces, which changes the normal stress distribution of the composite girder and affects the shear lag. To investigate the shear lag in the twin I-shaped composite girder (TICG) of cable-stayed bridges, analytical solutions of TICGs under bending moment and axial force were derived by introducing the additional deflection into the longitudinal displacement function. A shear lag coefficient calculation method of the TICG based on additional deflection was proposed. Experiments with three load cases were conducted to simulate the main girder in cable-stayed bridges. And the stress, deflection, and shear lag coefficient obtained from the theoretical method considering additional deflection (TMAD) were verified by the experimental and finite element results. A generalized verification of a composite girder from existing references was made, indicating that the proposed method could provide more accurate results for the shear lag effect.</p>\",\"PeriodicalId\":12476,\"journal\":{\"name\":\"Frontiers of Structural and Civil Engineering\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Structural and Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11709-023-0995-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-023-0995-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A theoretical model for investigating shear lag in composite cable-stayed bridges
The slab of the composite girder is usually very wide in composite cable-stayed bridges, and the main girder has an obvious shear lag. There is an axial force in the main girder due to cable forces, which changes the normal stress distribution of the composite girder and affects the shear lag. To investigate the shear lag in the twin I-shaped composite girder (TICG) of cable-stayed bridges, analytical solutions of TICGs under bending moment and axial force were derived by introducing the additional deflection into the longitudinal displacement function. A shear lag coefficient calculation method of the TICG based on additional deflection was proposed. Experiments with three load cases were conducted to simulate the main girder in cable-stayed bridges. And the stress, deflection, and shear lag coefficient obtained from the theoretical method considering additional deflection (TMAD) were verified by the experimental and finite element results. A generalized verification of a composite girder from existing references was made, indicating that the proposed method could provide more accurate results for the shear lag effect.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.