Ewa K. Nawrocka, Michał Jadwiszczak, Piotr J. Leszczyński, Krzysztof Kazimierczuk
{"title":"通过变温实验支持核磁共振光谱的分配","authors":"Ewa K. Nawrocka, Michał Jadwiszczak, Piotr J. Leszczyński, Krzysztof Kazimierczuk","doi":"10.1002/mrc.5433","DOIUrl":null,"url":null,"abstract":"<p>Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools in analytical chemistry. An important step in the analysis of NMR data is the assignment of resonance frequencies to the corresponding atoms in the molecule being investigated. The traditional approach considers the spectrum's characteristic parameters: chemical shift values, internuclear couplings, and peak intensities. In this paper, we show how to support the process of assigning a series of spectra of similar organic compounds by using temperature coefficients, that is, the rates of change in chemical shift values associated with given changes in temperature.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 7","pages":"479-485"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5433","citationCount":"0","resultStr":"{\"title\":\"Supporting the assignment of NMR spectra with variable-temperature experiments\",\"authors\":\"Ewa K. Nawrocka, Michał Jadwiszczak, Piotr J. Leszczyński, Krzysztof Kazimierczuk\",\"doi\":\"10.1002/mrc.5433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools in analytical chemistry. An important step in the analysis of NMR data is the assignment of resonance frequencies to the corresponding atoms in the molecule being investigated. The traditional approach considers the spectrum's characteristic parameters: chemical shift values, internuclear couplings, and peak intensities. In this paper, we show how to support the process of assigning a series of spectra of similar organic compounds by using temperature coefficients, that is, the rates of change in chemical shift values associated with given changes in temperature.</p>\",\"PeriodicalId\":18142,\"journal\":{\"name\":\"Magnetic Resonance in Chemistry\",\"volume\":\"62 7\",\"pages\":\"479-485\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5433\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5433\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5433","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Supporting the assignment of NMR spectra with variable-temperature experiments
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools in analytical chemistry. An important step in the analysis of NMR data is the assignment of resonance frequencies to the corresponding atoms in the molecule being investigated. The traditional approach considers the spectrum's characteristic parameters: chemical shift values, internuclear couplings, and peak intensities. In this paper, we show how to support the process of assigning a series of spectra of similar organic compounds by using temperature coefficients, that is, the rates of change in chemical shift values associated with given changes in temperature.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.