$$L^p$$ Teichmüller 理论:临界点的存在性和规律性

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Gaven Martin, Cong Yao
{"title":"$$L^p$$ Teichmüller 理论:临界点的存在性和规律性","authors":"Gaven Martin,&nbsp;Cong Yao","doi":"10.1007/s00205-023-01955-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study minimisers of the <i>p</i>-conformal energy functionals, </p><div><div><span>$$\\begin{aligned} \\textsf{E}_p(f):=\\int _{\\mathbb {D}}{\\mathbb {K}}^p(z,f)\\,\\text {d}z,\\quad f|_{\\mathbb {S}}=f_0|_{\\mathbb {S}}, \\end{aligned}$$</span></div></div><p>defined for self mappings <span>\\(f:{\\mathbb {D}}\\rightarrow {\\mathbb {D}}\\)</span> with finite distortion and prescribed boundary values <span>\\(f_0\\)</span>. Here </p><div><div><span>$$\\begin{aligned} {\\mathbb {K}}(z,f) = \\frac{\\Vert Df(z)\\Vert ^2}{J(z,f)} = \\frac{1+|\\mu _f(z)|^2}{1-|\\mu _f(z)|^2} \\end{aligned}$$</span></div></div><p>is the pointwise distortion functional and <span>\\(\\mu _f(z)\\)</span> is the Beltrami coefficient of <i>f</i>. We show that for quasisymmetric boundary data the limiting regimes <span>\\(p\\rightarrow \\infty \\)</span> recover the classical Teichmüller theory of extremal quasiconformal mappings (in part a result of Ahlfors), and for <span>\\(p\\rightarrow 1\\)</span> recovers the harmonic mapping theory. Critical points of <span>\\(\\textsf{E}_p\\)</span> always satisfy the inner-variational distributional equation </p><div><div><span>$$\\begin{aligned} 2p\\int _{\\mathbb {D}}{\\mathbb {K}}^p\\;\\frac{\\overline{\\mu _f}}{1+|\\mu _f|^2} \\varphi _{\\overline{z}}\\; \\text {d}z=\\int _{\\mathbb {D}}{\\mathbb {K}}^p \\; \\varphi _z\\; \\text {d}z, \\quad \\forall \\varphi \\in C_0^\\infty ({\\mathbb {D}}). \\end{aligned}$$</span></div></div><p>We establish the existence of minimisers in the <i>a priori</i> regularity class <span>\\(W^{1,\\frac{2p}{p+1}}({\\mathbb {D}})\\)</span> and show these minimisers have a pseudo-inverse - a continuous <span>\\(W^{1,2}({\\mathbb {D}})\\)</span> surjection of <span>\\({\\mathbb {D}}\\)</span> with <span>\\((h\\circ f)(z)=z\\)</span> almost everywhere. We then give a sufficient condition to ensure <span>\\(C^{\\infty }({\\mathbb {D}})\\)</span> smoothness of solutions to the distributional equation. For instance <span>\\({\\mathbb {K}}(z,f)\\in L^{p+1}_{loc}({\\mathbb {D}})\\)</span> is enough to imply the solutions to the distributional equation are local diffeomorphisms. Further <span>\\({\\mathbb {K}}(w,h)\\in L^1({\\mathbb {D}})\\)</span> will imply <i>h</i> is a homeomorphism, and together these results yield a diffeomorphic minimiser. We show such higher regularity assumptions to be necessary for critical points of the inner variational equation.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The \\\\(L^p\\\\) Teichmüller Theory: Existence and Regularity of Critical Points\",\"authors\":\"Gaven Martin,&nbsp;Cong Yao\",\"doi\":\"10.1007/s00205-023-01955-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study minimisers of the <i>p</i>-conformal energy functionals, </p><div><div><span>$$\\\\begin{aligned} \\\\textsf{E}_p(f):=\\\\int _{\\\\mathbb {D}}{\\\\mathbb {K}}^p(z,f)\\\\,\\\\text {d}z,\\\\quad f|_{\\\\mathbb {S}}=f_0|_{\\\\mathbb {S}}, \\\\end{aligned}$$</span></div></div><p>defined for self mappings <span>\\\\(f:{\\\\mathbb {D}}\\\\rightarrow {\\\\mathbb {D}}\\\\)</span> with finite distortion and prescribed boundary values <span>\\\\(f_0\\\\)</span>. Here </p><div><div><span>$$\\\\begin{aligned} {\\\\mathbb {K}}(z,f) = \\\\frac{\\\\Vert Df(z)\\\\Vert ^2}{J(z,f)} = \\\\frac{1+|\\\\mu _f(z)|^2}{1-|\\\\mu _f(z)|^2} \\\\end{aligned}$$</span></div></div><p>is the pointwise distortion functional and <span>\\\\(\\\\mu _f(z)\\\\)</span> is the Beltrami coefficient of <i>f</i>. We show that for quasisymmetric boundary data the limiting regimes <span>\\\\(p\\\\rightarrow \\\\infty \\\\)</span> recover the classical Teichmüller theory of extremal quasiconformal mappings (in part a result of Ahlfors), and for <span>\\\\(p\\\\rightarrow 1\\\\)</span> recovers the harmonic mapping theory. Critical points of <span>\\\\(\\\\textsf{E}_p\\\\)</span> always satisfy the inner-variational distributional equation </p><div><div><span>$$\\\\begin{aligned} 2p\\\\int _{\\\\mathbb {D}}{\\\\mathbb {K}}^p\\\\;\\\\frac{\\\\overline{\\\\mu _f}}{1+|\\\\mu _f|^2} \\\\varphi _{\\\\overline{z}}\\\\; \\\\text {d}z=\\\\int _{\\\\mathbb {D}}{\\\\mathbb {K}}^p \\\\; \\\\varphi _z\\\\; \\\\text {d}z, \\\\quad \\\\forall \\\\varphi \\\\in C_0^\\\\infty ({\\\\mathbb {D}}). \\\\end{aligned}$$</span></div></div><p>We establish the existence of minimisers in the <i>a priori</i> regularity class <span>\\\\(W^{1,\\\\frac{2p}{p+1}}({\\\\mathbb {D}})\\\\)</span> and show these minimisers have a pseudo-inverse - a continuous <span>\\\\(W^{1,2}({\\\\mathbb {D}})\\\\)</span> surjection of <span>\\\\({\\\\mathbb {D}}\\\\)</span> with <span>\\\\((h\\\\circ f)(z)=z\\\\)</span> almost everywhere. We then give a sufficient condition to ensure <span>\\\\(C^{\\\\infty }({\\\\mathbb {D}})\\\\)</span> smoothness of solutions to the distributional equation. For instance <span>\\\\({\\\\mathbb {K}}(z,f)\\\\in L^{p+1}_{loc}({\\\\mathbb {D}})\\\\)</span> is enough to imply the solutions to the distributional equation are local diffeomorphisms. Further <span>\\\\({\\\\mathbb {K}}(w,h)\\\\in L^1({\\\\mathbb {D}})\\\\)</span> will imply <i>h</i> is a homeomorphism, and together these results yield a diffeomorphic minimiser. We show such higher regularity assumptions to be necessary for critical points of the inner variational equation.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-023-01955-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01955-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究 p-共形能量函数的最小值,$$\begin{aligned}(开始{aligned})。textsf{E}_p(f):=int _{\mathbb {D}}{mathbb {K}}^p(z,f)\,text {d}z,\quad f|_{\mathbb {S}=f_0|_{\mathbb {S}}, \end{aligned}$$定义为自映射 \(f.z),\quad f|_{\mathbb {S}=f_0|_{\mathbb {S}}, \end{aligned}$$:f: {\mathbb {D}\rightarrow {\mathbb {D}}\) 具有有限失真和规定边界值 \(f_0\)。这里 $$\begin{aligned} {\mathbb {K}}(z,f) = \frac\{Vert Df(z)\Vert ^2}{J(z,f)} = \frac{1+|\mu _f(z)|^2}{1-|\mu _f(z)|^2}\我们证明,对于准对称边界数据,极限情形 \(p\rightarrow \infty \) 恢复了极值准共形映射的经典 Teichmüller 理论(部分是 Ahlfors 的结果),而对于 \(p\rightarrow 1\) 则恢复了调和映射理论。(textsf{E}_p\)的临界点总是满足内变分布方程 $$\begin{aligned} 2p\int _{\mathbb {D}}{\mathbb {K}}^p\;\frac{overline\{mu _f}}{1+|\mu _f|^2}\varphi _{overline{z}}\; \text {d}z=\int _{mathbb {D}}{mathbb {K}}^p \; \varphi _z\; \text {d}z, \quad \forall \varphi \ in C_0^\infty ({\mathbb {D}}).\end{aligned}$We establish the existence of minimisers in the a priori regularity class \(W^{1、\frac{2p}{p+1}}({\mathbb {D}})中存在最小化函数,并证明这些最小化函数有一个伪反--一个连续的 \(W^{1,2}({\mathbb {D}})的 \({\mathbb {D}}) 与 \((h\circ f)(z)=z\) 的投射几乎无处不在。然后我们给出一个充分条件来确保分布方程的解的平滑性。例如 \({\mathbb {K}}(z,f)\in L^{p+1}_{loc}({\mathbb {D}}) 就足以暗示分布方程的解是局部衍射。此外,L^1({\mathbb {D}})\({\mathbb {K}}(w,h)\in L^1({\mathbb {D}}))将暗示 h 是同构的,而这些结果共同产生了一个差分最小化。我们将证明这种更高的正则性假设对于内变分方程的临界点是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The \(L^p\) Teichmüller Theory: Existence and Regularity of Critical Points

We study minimisers of the p-conformal energy functionals,

$$\begin{aligned} \textsf{E}_p(f):=\int _{\mathbb {D}}{\mathbb {K}}^p(z,f)\,\text {d}z,\quad f|_{\mathbb {S}}=f_0|_{\mathbb {S}}, \end{aligned}$$

defined for self mappings \(f:{\mathbb {D}}\rightarrow {\mathbb {D}}\) with finite distortion and prescribed boundary values \(f_0\). Here

$$\begin{aligned} {\mathbb {K}}(z,f) = \frac{\Vert Df(z)\Vert ^2}{J(z,f)} = \frac{1+|\mu _f(z)|^2}{1-|\mu _f(z)|^2} \end{aligned}$$

is the pointwise distortion functional and \(\mu _f(z)\) is the Beltrami coefficient of f. We show that for quasisymmetric boundary data the limiting regimes \(p\rightarrow \infty \) recover the classical Teichmüller theory of extremal quasiconformal mappings (in part a result of Ahlfors), and for \(p\rightarrow 1\) recovers the harmonic mapping theory. Critical points of \(\textsf{E}_p\) always satisfy the inner-variational distributional equation

$$\begin{aligned} 2p\int _{\mathbb {D}}{\mathbb {K}}^p\;\frac{\overline{\mu _f}}{1+|\mu _f|^2} \varphi _{\overline{z}}\; \text {d}z=\int _{\mathbb {D}}{\mathbb {K}}^p \; \varphi _z\; \text {d}z, \quad \forall \varphi \in C_0^\infty ({\mathbb {D}}). \end{aligned}$$

We establish the existence of minimisers in the a priori regularity class \(W^{1,\frac{2p}{p+1}}({\mathbb {D}})\) and show these minimisers have a pseudo-inverse - a continuous \(W^{1,2}({\mathbb {D}})\) surjection of \({\mathbb {D}}\) with \((h\circ f)(z)=z\) almost everywhere. We then give a sufficient condition to ensure \(C^{\infty }({\mathbb {D}})\) smoothness of solutions to the distributional equation. For instance \({\mathbb {K}}(z,f)\in L^{p+1}_{loc}({\mathbb {D}})\) is enough to imply the solutions to the distributional equation are local diffeomorphisms. Further \({\mathbb {K}}(w,h)\in L^1({\mathbb {D}})\) will imply h is a homeomorphism, and together these results yield a diffeomorphic minimiser. We show such higher regularity assumptions to be necessary for critical points of the inner variational equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信